3,581 research outputs found

    Separation of two bodies in space

    Get PDF
    Computer program analyzes the motion of two rigid bodies in space, separating as a result of any one, or a combination of, the following mechanisms - springs with ball ends, springs with one end guided, pyrotechnics, rockets, cold-gas jets, air pistons, and Coulomb drag

    Architecture of a host–parasite interface: complex targeting mechanisms revealed through proteomics

    Get PDF
    Surface membrane organization and composition is key to cellular function, and membrane proteins serve many essential roles in endocytosis, secretion, and cell recognition. The surface of parasitic organisms, however, is a double-edged sword; this is the primary interface between parasites and their hosts, and those crucial cellular processes must be carried out while avoiding elimination by the host immune defenses. For extracellular African trypanosomes, the surface is partitioned such that all endo- and exocytosis is directed through a specific membrane region, the flagellar pocket, in which it is thought the majority of invariant surface proteins reside. However, very few of these proteins have been identified, severely limiting functional studies, and hampering the development of potential treatments. Here we used an integrated biochemical, proteomic and bioinformatic strategy to identify surface components of the human parasite Trypanosoma brucei. This surface proteome contains previously known flagellar pocket proteins as well as multiple novel components, and is significantly enriched in proteins that are essential for parasite survival. Molecules with receptor-like properties are almost exclusively parasite-specific, whereas transporter-like proteins are conserved in model organisms. Validation shows that the majority of surface proteome constituents are bona fide surface-associated proteins and, as expected, most present at the flagellar pocket. Moreover, the largest systematic analysis of trypanosome surface molecules to date provides evidence that the cell surface is compartmentalized into three distinct domains with free diffusion of molecules in each, but selective, asymmetric traffic between. This work provides a paradigm for the compartmentalization of a cell surface and a resource for its analysis

    Observational measure of implementation progress in community based settings: The Stages of implementation completion (SIC)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An increasingly large body of research is focused on designing and testing strategies to improve knowledge about how to embed evidence-based programs (EBP) into community settings. Development of strategies for overcoming barriers and increasing the effectiveness and pace of implementation is a high priority. Yet, there are few research tools that measure the implementation process itself. The Stages of Implementation Completion (SIC) is an observation-based measure that is used to track the time to achievement of key implementation milestones in an EBP being implemented in 51 counties in 53 sites (two counties have two sites) in two states in the United States.</p> <p>Methods</p> <p>The SIC was developed in the context of a randomized trial comparing the effectiveness of two implementation strategies: community development teams (experimental condition) and individualized implementation (control condition). Fifty-one counties were randomized to experimental or control conditions for implementation of multidimensional treatment foster care (MTFC), an alternative to group/residential care placement for children and adolescents. Progress through eight implementation stages was tracked by noting dates of completion of specific activities in each stage. Activities were tailored to the strategies for implementing the specific EBP.</p> <p>Results</p> <p>Preliminary data showed that several counties ceased progress during pre-implementation and that there was a high degree of variability among sites in the duration scores per stage and on the proportion of activities that were completed in each stage. Progress through activities and stages for three example counties is shown.</p> <p>Conclusions</p> <p>By assessing the attainment time of each stage and the proportion of activities completed, the SIC measure can be used to track and compare the effectiveness of various implementation strategies. Data from the SIC will provide sites with relevant information on the time and resources needed to implement MTFC during various phases of implementation. With some modifications, the SIC could be appropriate for use in evaluating implementation strategies in head-to-head randomized implementation trials and as a monitoring tool for rolling out other EBPs.</p

    Understanding Terrorist Organizations with a Dynamic Model

    Full text link
    Terrorist organizations change over time because of processes such as recruitment and training as well as counter-terrorism (CT) measures, but the effects of these processes are typically studied qualitatively and in separation from each other. Seeking a more quantitative and integrated understanding, we constructed a simple dynamic model where equations describe how these processes change an organization's membership. Analysis of the model yields a number of intuitive as well as novel findings. Most importantly it becomes possible to predict whether counter-terrorism measures would be sufficient to defeat the organization. Furthermore, we can prove in general that an organization would collapse if its strength and its pool of foot soldiers decline simultaneously. In contrast, a simultaneous decline in its strength and its pool of leaders is often insufficient and short-termed. These results and other like them demonstrate the great potential of dynamic models for informing terrorism scholarship and counter-terrorism policy making.Comment: To appear as Springer Lecture Notes in Computer Science v2: vectorized 4 figures, fixed two typos, more detailed bibliograph

    Resonant hyper-Raman scattering in spherical quantum dots

    Full text link
    A theoretical model of resonant hyper-Raman scattering by an ensemble of spherical semiconductor quantum dots has been developed. The electronic intermediate states are described as Wannier-Mott excitons in the framework of the envelope function approximation. The optical polar vibrational modes of the nanocrystallites (vibrons) and their interaction with the electronic system are analized with the help of a continuum model satisfying both the mechanical and electrostatic matching conditions at the interface. An explicit expression for the hyper-Raman scattering efficiency is derived, which is valid for incident two-photon energy close to the exciton resonances. The dipole selection rules for optical transitions and Fr\"ohlich-like exciton-lattice interaction are derived: It is shown that only exciton states with total angular momentum L=0,1L=0,1 and vibrational modes with angular momentum lp=1l_p=1 contribute to the hyper-Raman scattering process. The associated exciton energies, wavefunctions, and vibron frequencies have been obtained for spherical CdSe zincblende-type nanocrystals, and the corresponding hyper-Raman scattering spectrum and resonance profile are calculated. Their dependence on the dot radius and the influence of the size distribution on them are also discussed.Comment: 12 pages REVTeX (two columns), 2 tables, 8 figure
    • …
    corecore