34,341 research outputs found
Advanced solid electrolyte cell for CO2 and H2O electrolysis
A solid electrolyte cell with improved sealing characteristics was examined. A tube cell was designed, developed, fabricated, and tested. Design concepts incorporated in the tube cell to improve its sealing capability included minimizing the number of seals per cell and moving seals to lower temperature regions. The advanced tube cell design consists of one high temperature ceramic cement seal, one high temperature gasket seal, and three low temperature silicone elastomer seals. The two high temperature seals in the tube cell design represent a significant improvement over the ten high temperature precious metal seals required by the electrolyzer drum design. For the tube cell design the solid electrolyte was 8 mole percent yttria stabilized zirconium oxide slip cast into the shape of a tube with electrodes applied on the inside and outside surfaces
Cities in fiction: Perambulations with John Berger
This paper explores selected novels by John Berger in which cities play a central role. These cities are places, partially real and partially imagined, where memory, hope, and despair intersect. My reading of the novels enables me to trace important themes in recent discourses on the nature of contemporary capitalism, including notions of resistance and universality. I also show how Berger?s work points to a writing that can break free from the curious capacity of capitalism to absorb and feed of its critique
Quiescent Prominence Dynamics Observed with the Hinode Solar Optical Telescope. II. Prominence Bubble Boundary Layer Characteristics and the Onset of a Coupled KelvinâHelmholtz RayleighâTaylor Instability
This is the author accepted manuscript. The final version is available from American Astronomical Society via the DOI in this record.We analyze solar quiescent prominence bubble characteristics and instability dynamics using Hinode/Solar
Optical Telescope (SOT) data. We measure bubble expansion rate, prominence downflows,
and the profile of the boundary layer brightness and thickness as a function of time. The largest
bubble analyzed rises into the prominence with a speed of about 1.3 km sâ1 until it is destabilized
by a localized shear flow on the boundary. Boundary layer thickness grows gradually as prominence
downflows deposit plasma onto the bubble with characteristic speeds of 20 â 35 km sâ1
. Lateral
downflows initiate from the thickened boundary layer with characteristic speeds of 25 â 50 km sâ1
,
âdrainingâ the layer of plasma. Strong shear flow across one bubble boundary leads to an apparent
coupled Kelvin-Helmholtz Rayleigh-Taylor (KH-RT) instability. We measure shear flow speeds above
the bubble of 10 km sâ1 and infer interior bubble flow speeds on the order of 100 km sâ1
. Comparing
the measured growth rate of the instability to analytic expressions, we infer a magnetic flux density
across the bubble boundary of âź 10â3 T (10 gauss) at an angle of âź 70âŚ
to the prominence plane.
The results are consistent with the hypothesis that prominence bubbles are caused by magnetic flux
that emerges below a prominence, setting up the conditions for RT, or combined KH-RT, instability
flows that transport flux, helicity, and hot plasma upward into the overlying coronal magnetic flux
ropeTEB was supported by NASA contracts NNM07AA01C (Solar-B FPP), NNG04EA00C (SDO/AIA) while at the Lockheed Martin Solar and Astrophysics Laboratory (LMSAL), and by The National Weather Service (NWS) Office of Science and Technology Integration (OSTI) while at the National Oceanic and Atmospheric Administration (NOAA). A.H. was supported by his STFC Ernest Rutherford Fellowship grant number ST/L00397X/2. W.L. was supported by NASA HGI grant NNX15AR15G and NASA contract NNG09FA40C (IRIS) at LMSAL
Conceptual design study of a Harrier V/STOL research aircraft
MCAIR recently completed a conceptual design study to define modification approaches to, and derive planning prices for the conversion of a two place Harrier to a V/STOL control, display and guidance research aircraft. Control concepts such as rate damping, attitude stabilization, velocity command, and cockpit controllers are to be demonstrated. Display formats will also be investigated, and landing, navigation and guidance systems flight tested. The rear cockpit is modified such that it can be quickly adapted to faithfully simulate the controls, displays and handling qualities of a Type A or Type B V/STOL. The safety pilot always has take command capability. The modifications studied fall into two categories: basic modifications and optional modifications. Technical descriptions of the basic modifications and of the optional modifications are presented. The modification plan and schedule as well as the test plan and schedule are presented. The failure mode and effects analysis, aircraft performance, aircraft weight, and aircraft support are discussed
Strong coupling between single photons in semiconductor microcavities
We discuss the observability of strong coupling between single photons in
semiconductor microcavities coupled by a chi(2) nonlinearity. We present two
schemes and analyze the feasibility of their practical implementation in three
systems: photonic crystal defects, micropillars and microdisks, fabricated out
of GaAs. We show that if a weak coherent state is used to enhance the chi(2)
interaction, the strong coupling regime between two modes at different
frequencies occupied by a single photon is within reach of current technology.
The unstimulated strong coupling of a single photon and a photon pair is very
challenging and will require an improvement in mirocavity quality factors of
2-4 orders of magnitude to be observable.Comment: 4 page
Fluctuations in superconducting rings with two order parameters
Starting from the Ginzburg-Landau energy functional, we discuss how the
presence of two order parameters and the coupling between them influence a
superconducting ring in the fluctuative regime. Our method is exact, but
requires numerical implementation. We also study approximations for which some
analytic expressions can be obtained, and check their ranges of validity. We
provide estimates for the temperature ranges where fluctuations are important,
calculate the persistent current in magnesium diboride rings as a function of
temperature and enclosed flux, and point out its additional dependence on the
cross-section area of the ring. We find temperature regions in which
fluctuations enhance the persistent currents and regions where they inhibit the
persistent current. The presence of two order parameters that can fluctuate
independently always leads to larger averages of the order parameters at Tc,
but only for appropriate parameters this yields larger persistent current. In
cases of very different material parameters for the two coupled condensates,
the persistent current is inhibited
Snowmass 2001: Jet Energy Flow Project
Conventional cone jet algorithms arose from heuristic considerations of LO
hard scattering coupled to independent showering. These algorithms implicitly
assume that the final states of individual events can be mapped onto a unique
set of jets that are in turn associated with a unique set of underlying hard
scattering partons. Thus each final state hadron is assigned to a unique
underlying parton. The Jet Energy Flow (JEF) analysis described here does not
make such assumptions. The final states of individual events are instead
described in terms of flow distributions of hadronic energy. Quantities of
physical interest are constructed from the energy flow distribution summed over
all events. The resulting analysis is less sensitive to higher order
perturbative corrections and the impact of showering and hadronization than the
standard cone algorithms.Comment: REVTeX4, 13 pages, 6 figures; Contribution to the P5 Working Group on
QCD and Strong Interactions at Snowmass 200
- âŚ