11,138 research outputs found

    Type II superconductivity in SrPd2Ge2

    Full text link
    Previous investigations have shown that SrPd2Ge2, a compound isostructural with "122" iron pnictides but iron- and pnictogen-free, is a conventional superconductor with a single s-wave energy gap and a strongly three-dimensional electronic structure. In this work we reveal the Abrikosov vortex lattice formed in SrPd2Ge2 when exposed to magnetic field by means of scanning tunneling microscopy and spectroscopy. Moreover, by examining the differential conductance spectra across a vortex and estimating the upper and lower critical magnetic fields by tunneling spectroscopy and local magnetization measurements, we show that SrPd2Ge2 is a strong type II superconductor with \kappa >> sqrt(2). Also, we compare the differential conductance spectra in various magnetic fields to the pair breaking model of Maki - de Gennes for dirty limit type II superconductor in the gapless region. This way we demonstrate that the type II superconductivity is induced by the sample being in the dirty limit, while in the clean limit it would be a type I superconductor with \kappa\ << sqrt(2), in concordance with our previous study (T. Kim et al., Phys. Rev. B 85, (2012)).Comment: 9 pages, 4 figure

    U(1)' solution to the mu-problem and the proton decay problem in supersymmetry without R-parity

    Full text link
    The Minimal Supersymmetric Standard Model (MSSM) is plagued by two major fine-tuning problems: the mu-problem and the proton decay problem. We present a simultaneous solution to both problems within the framework of a U(1)'-extended MSSM (UMSSM), without requiring R-parity conservation. We identify several classes of phenomenologically viable models and provide specific examples of U(1)' charge assignments. Our models generically contain either lepton number violating or baryon number violating renormalizable interactions, whose coexistence is nevertheless automatically forbidden by the new U(1)' gauge symmetry. The U(1)' symmetry also prohibits the potentially dangerous and often ignored higher-dimensional proton decay operators such as QQQL and UUDE which are still allowed by R-parity. Thus, under minimal assumptions, we show that once the mu-problem is solved, the proton is sufficiently stable, even in the presence of a minimum set of exotics fields, as required for anomaly cancellation. Our models provide impetus for pursuing the collider phenomenology of R-parity violation within the UMSSM framework.Comment: Version published in Phys. Rev.

    PCHI I: ESTIMATING THE BUDGET AND HEALTH IMPACTS OF LETROZOLE FOR ADVANCED BREAST CANCER

    Get PDF

    Elastic constants of borocarbides. New approach to acoustic Measurement technique

    Full text link
    A new version of the phase method of determining the sound velocity is proposed and implemented. It utilizes the ``Nonius'' measurement technique and can give acceptable accuracy (~1%) in samples of submillimeter size. Measurements of the sound velocity are made in single-crystal samples of the borocarbides RNi2B2C (R = Y,Lu,Ho). The elastic constants and the Debye temperature are calculated.Comment: 5 figures, 2 table

    Evidence for conventional superconductivity in SrPd2Ge2

    Full text link
    Electronic structure of SrPd2Ge2 single crystals is studied by angle-resolved photoemission spectroscopy (ARPES), scanning tunneling spectroscopy (STS) and band-structure calculations within the local-density approximation (LDA). The STS measurements show single s-wave superconducting energy gap \Delta(0) = 0.5 meV. Photon-energy dependence of the observed Fermi surface reveals a strongly three-dimensional character of the corresponding electronic bands. By comparing the experimentally measured and calculated Fermi velocities a renormalization factor of 0.95 is obtained, which is much smaller than typical values reported in Fe-based superconductors. We ascribe such an unusually low band renormalization to the different orbital character of the conduction electrons and using ARPES and STS data argue that SrPd2Ge2 is likely to be a conventional superconductor, which makes it clearly distinct from isostructural iron pnictide superconductors of the "122" family.Comment: submitted to PR

    Onset of dendritic flux avalanches in superconducting films

    Full text link
    We report a detailed comparison of experimental data and theoretical predictions for the dendritic flux instability, believed to be a generic behavior of type-II superconducting films. It is shown that a thermo-magnetic model published very recently [Phys. Rev. B 73, 014512 (2006)] gives an excellent quantitative description of key features like the instability onset (first dendrite appearance) magnetic field, and how the onset field depends on both temperature and sample size. The measurements were made using magneto-optical imaging on a series of different strip-shaped samples of MgB2. Excellent agreement is also obtained by reanalyzing data previously published for Nb.Comment: 4 pages, 5 figure

    The Localization Transition of the Two-Dimensional Lorentz Model

    Full text link
    We investigate the dynamics of a single tracer particle performing Brownian motion in a two-dimensional course of randomly distributed hard obstacles. At a certain critical obstacle density, the motion of the tracer becomes anomalous over many decades in time, which is rationalized in terms of an underlying percolation transition of the void space. In the vicinity of this critical density the dynamics follows the anomalous one up to a crossover time scale where the motion becomes either diffusive or localized. We analyze the scaling behavior of the time-dependent diffusion coefficient D(t) including corrections to scaling. Away from the critical density, D(t) exhibits universal hydrodynamic long-time tails both in the diffusive as well as in the localized phase.Comment: 13 pages, 7 figures

    The Dendritic magnetic avalanches in carbon-free MgB2_2 thin films with and without a deposited Au layer

    Full text link
    From the magneto optics images (MOI), the dendritic magnetic avalanche is known to appear dominantly for thin films of the newly discovered MgB2_2. To clarify the origin of this phenomenon, we studied in detail the MOI of carbon-free MgB2_2 thin films with and without a deposited gold layer. The MOI indicated carbon contamination was not the main source of the avalanche. The MOI clearly showed that the deposition of metallic gold deposition on top of a MgB2_2 thin film improved its thermal stability and suppressed the sudden appearance of the dendritic flux avalanche. This is consistent with the previous observation of flux noise in the magnetization.Comment: 9 pages, 4 figeure

    Very strong intrinsic supercurrent carrying ability and vortex avalanches in (Ba,K)Fe2As2 superconducting single crystals

    Get PDF
    We report that single crystals of (Ba,K)Fe2As2 with Tc = 32 K have a pinning potential, U0, as high as 10^4 K, with U0 showing very little field depend-ence. In addition, the (Ba,K)Fe2As2 single crystals become isotropic at low temperatures and high magnetic fields, resulting in a very rigid vortex lattice, even in fields very close to Hc2. The rigid vortices in the two dimensional (Ba,K)Fe2As2 distinguish this compound from 2D high Tc cuprate superconductors with 2D vortices, and make it being capable of cearrying very high critical current.Flux jumping due to high Jc was also observed in large samples at low temperatures.Comment: 4 pages, 7 figures. submitte

    Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers

    Get PDF
    The Support Vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights and threshold such as to minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by kk--means clustering and the weights are found using error backpropagation. We consider three machines, namely a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the US postal service database of handwritten digits, the SV machine achieves the highest test accuracy, followed by the hybrid approach. The SV approach is thus not only theoretically well--founded, but also superior in a practical application
    • …
    corecore