17 research outputs found

    Synthesis and characterization of thin film composite membranes made of PSF-TiO2/GO nanocomposite substrate for forward osmosis applications

    Get PDF
    Support layer of thin film composite (TFC) membrane plays an important role in forward osmosis (FO) performance. A new type of support layer or nanocomposite substrate was developed by incorporating titanium dioxide (TiO2)/graphene oxide (GO) into polysulfone (PSF) matrix. Prior to performance evaluation, the developed substrates were characterized with respect to surface chemistry, roughness and cross-sectional morphology. The results showed that both surface hydrophilicity and roughness of PSF-based substrates were increased upon incorporation of nanomaterials. Substrates with long finger-like voids extended from the top to the bottom could be developed upon incorporation of TiO2 (SubstrateTiO2) or TiO2/GO mixture (SubstrateTiO2/GO). The improved surface hydrophilicity and favorable structure formed are the main factors leading to higher water flux of nanocomposite substrate. Moreover, the water flux of FO using TFC membranes could be enhanced using this nanocomposite substrate. Comparing to the control TFC membrane, the TFC membranes made of SubstrateTiO2 and SubstrateTiO2/GO exhibited greater water flux with minimum increase in reverse draw solute flux. Based on the results obtained

    Synthesis and characterization of thin film composite membranes made of PSF-TiO2/GO nanocomposite substrate for forward osmosis applications

    Get PDF
    Support layer of thin film composite (TFC) membrane plays an important role in forward osmosis (FO) performance. A new type of support layer or nanocomposite substrate was developed by incorporating titanium dioxide (TiO2)/graphene oxide (GO) into polysulfone (PSF) matrix. Prior to performance evaluation, the developed substrates were characterized with respect to surface chemistry, roughness and cross-sectional morphology. The results showed that both surface hydrophilicity and roughness of PSF-based substrates were increased upon incorporation of nanomaterials. Substrates with long finger-like voids extended from the top to the bottom could be developed upon incorporation of TiO2 (SubstrateTiO2) or TiO2/GO mixture (SubstrateTiO2/GO). The improved surface hydrophilicity and favorable structure formed are the main factors leading to higher water flux of nanocomposite substrate. Moreover, the water flux of FO using TFC membranes could be enhanced using this nanocomposite substrate. Comparing to the control TFC membrane, the TFC membranes made of SubstrateTiO2 and SubstrateTiO2/GO exhibited greater water flux with minimum increase in reverse draw solute flux. Based on the results obtained, it can be concluded that the incorporation of TiO2 and/or GO nanoparticles into PSF substrate could potentially improve the TFC membrane performance during FO applications

    Synthesis and characterization of thin film composite membranes made of PSF-TiO2/GO nanocomposite substrate for forward osmosis applications

    Get PDF
    Support layer of thin film composite (TFC) membrane plays an important role in forward osmosis (FO) performance. A new type of support layer or nanocomposite substrate was developed by incorporating titanium dioxide (TiO2)/graphene oxide (GO) into polysulfone (PSF) matrix. Prior to performance evaluation, the developed substrates were characterized with respect to surface chemistry, roughness and cross-sectional morphology. The results showed that both surface hydrophilicity and roughness of PSF-based substrates were increased upon incorporation of nanomaterials. Substrates with long finger-like voids extended from the top to the bottom could be developed upon incorporation of TiO2 (SubstrateTiO2) or TiO2/GO mixture (SubstrateTiO2/GO). The improved surface hydrophilicity and favorable structure formed are the main factors leading to higher water flux of nanocomposite substrate. Moreover, the water flux of FO using TFC membranes could be enhanced using this nanocomposite substrate. Comparing to the control TFC membrane, the TFC membranes made of SubstrateTiO2 and SubstrateTiO2/GO exhibited greater water flux with minimum increase in reverse draw solute flux. Based on the results obtained, it can be concluded that the incorporation of TiO2 and/or GO nanoparticles into PSF substrate could potentially improve the TFC membrane performance during FO applications

    Structural and Functional Profiling of the Human Histone Methyltransferase SMYD3

    Get PDF
    The SET and MYND Domain (SMYD) proteins comprise a unique family of multi-domain SET histone methyltransferases that are implicated in human cancer progression. Here we report an analysis of the crystal structure of the full length human SMYD3 in a complex with an analog of the S-adenosyl methionine (SAM) methyl donor cofactor. The structure revealed an overall compact architecture in which the “split-SET” domain adopts a canonical SET domain fold and closely assembles with a Zn-binding MYND domain and a C-terminal superhelical 9 α-helical bundle similar to that observed for the mouse SMYD1 structure. Together, these structurally interlocked domains impose a highly confined binding pocket for histone substrates, suggesting a regulated mechanism for its enzymatic activity. Our mutational and biochemical analyses confirm regulatory roles of the unique structural elements both inside and outside the core SET domain and establish a previously undetected preference for trimethylation of H4K20
    corecore