239 research outputs found
Novel Repair of Costal Margin Rupture With Preoperative 3D Planning
WHAT WOULD YOU DO? This is a 32-year-old man involved in a motor vehicle crash in 2019 with chronic left-sided rib pain since. He was initially treated with physical therapy and medical management with no improvement. CT imaging in 2021 noted displaced left lateral seventh and eighth ribs, noted chest wall deformity, and when three-dimensional (3D) reconstruction of his ribs was created, this noted a left- sided costal margin rupture at the sixth and seventh ribs
Diffusion with Forward Models: Solving Stochastic Inverse Problems Without Direct Supervision
Denoising diffusion models are a powerful type of generative models used to
capture complex distributions of real-world signals. However, their
applicability is limited to scenarios where training samples are readily
available, which is not always the case in real-world applications. For
example, in inverse graphics, the goal is to generate samples from a
distribution of 3D scenes that align with a given image, but ground-truth 3D
scenes are unavailable and only 2D images are accessible. To address this
limitation, we propose a novel class of denoising diffusion probabilistic
models that learn to sample from distributions of signals that are never
directly observed. Instead, these signals are measured indirectly through a
known differentiable forward model, which produces partial observations of the
unknown signal. Our approach involves integrating the forward model directly
into the denoising process. This integration effectively connects the
generative modeling of observations with the generative modeling of the
underlying signals, allowing for end-to-end training of a conditional
generative model over signals. During inference, our approach enables sampling
from the distribution of underlying signals that are consistent with a given
partial observation. We demonstrate the effectiveness of our method on three
challenging computer vision tasks. For instance, in the context of inverse
graphics, our model enables direct sampling from the distribution of 3D scenes
that align with a single 2D input image.Comment: Project page: https://diffusion-with-forward-models.github.io
Renormalization of the weak hadronic current in the nuclear medium
The renormalization of the weak charge-changing hadronic current as a
function of the reaction energy release is studied at the nucleonic level. We
have calculated the average quenching factors for each type of current (vector,
axial vector and induced pseudoscalar). The obtained quenching in the axial
vector part is, at zero momentum transfer, 19% for the sd shell and 23% in the
fp shell. We have extended the calculations also to heavier systems such as
Ni and Sn, where we obtain stronger quenchings, 44% and 59%,
respectively. Gamow--Teller type transitions are discussed, along with the
higher order matrix elements. The quenching factors are constant up to roughly
60 MeV momentum transfer. Therefore the use of energy-independent quenching
factors in beta decay is justified. We also found that going beyond the zeroth
and first order operators (in inverse nucleon mass) does not give any
substantial contribution. The extracted renormalization to the ratio
at q=100 MeV is -3.5%, -7.1$%, -28.6%, and +8.7% for mass 16, 40, 56, and 100,
respectively.Comment: 28 pages, 6 figure
Simultaneity and generalized connections in general relativity
Stationary extended frames in general relativity are considered. The
requirement of stationarity allows to treat the spacetime as a principal fiber
bundle over the one-dimensional group of time translations. Over this bundle a
connection form establishes the simultaneity between neighboring events
accordingly with the Einstein synchronization convention. The mathematics
involved is that of gauge theories where a gauge choice is interpreted as a
global simultaneity convention. Then simultaneity in non-stationary frames is
investigated: it turns to be described by a gauge theory in a fiber bundle
without structure group, the curvature being given by the Fr\"olicher-Nijenhuis
bracket of the connection. The Bianchi identity of this gauge theory is a
differential relation between the vorticity field and the acceleration field.
In order for the simultaneity connection to be principal, a necessary and
sufficient condition on the 4-velocity of the observers is given.Comment: RevTeX, 9 pages, 2 figures, 1 table. Previous title "The gauge nature
of simultaneity". Classical and Quantum Gravity
http://www.iop.org/EJ/journal/CQ
Evidence for the Emergence of New Rice Types of Interspecific Hybrid Origin in West African Farmers' Fields
In West Africa two rice species (Oryza glaberrima Steud. and Oryza sativa L.) co-exist. Although originally it was thought that interspecific hybridization is impossible without biotechnological methods, progenies of hybridization appear to occur in farmer fields
Expressed sequence tag analysis of adult human optic nerve for NEIBank: Identification of cell type and tissue markers
<p>Abstract</p> <p>Background</p> <p>The optic nerve is a pure white matter central nervous system (CNS) tract with an isolated blood supply, and is widely used in physiological studies of white matter response to various insults. We examined the gene expression profile of human optic nerve (ON) and, through the NEIBANK online resource, to provide a resource of sequenced verified cDNA clones. An un-normalized cDNA library was constructed from pooled human ON tissues and was used in expressed sequence tag (EST) analysis. Location of an abundant oligodendrocyte marker was examined by immunofluorescence. Quantitative real time polymerase chain reaction (qRT-PCR) and Western analysis were used to compare levels of expression for key calcium channel protein genes and protein product in primate and rodent ON.</p> <p>Results</p> <p>Our analyses revealed a profile similar in many respects to other white matter related tissues, but significantly different from previously available ON cDNA libraries. The previous libraries were found to include specific markers for other eye tissues, suggesting contamination. Immune/inflammatory markers were abundant in the new ON library. The oligodendrocyte marker QKI was abundant at the EST level. Immunofluorescence revealed that this protein is a useful oligodendrocyte cell-type marker in rodent and primate ONs. L-type calcium channel EST abundance was found to be particularly low. A qRT-PCR-based comparative mammalian species analysis reveals that L-type calcium channel expression levels are significantly lower in primate than in rodent ON, which may help account for the class-specific difference in responsiveness to calcium channel blocking agents. Several known eye disease genes are abundantly expressed in ON. Many genes associated with normal axonal function, mRNAs associated with axonal transport, inflammation and neuroprotection are observed.</p> <p>Conclusion</p> <p>We conclude that the new cDNA library is a faithful representation of human ON and EST data provide an initial overview of gene expression patterns in this tissue. The data provide clues for tissue-specific and species-specific properties of human ON that will help in design of therapeutic models.</p
Control of Transcription by Cell Size
Cell size increases significantly with increasing ploidy. Differences in cell size and ploidy are associated with alterations in gene expression, although no direct connection has been made between cell size and transcription. Here we show that ploidy-associated changes in gene expression reflect transcriptional adjustment to a larger cell size, implicating cellular geometry as a key parameter in gene regulation. Using RNA-seq, we identified genes whose expression was altered in a tetraploid as compared with the isogenic haploid. A significant fraction of these genes encode cell surface proteins, suggesting an effect of the enlarged cell size on the differential regulation of these genes. To test this hypothesis, we examined expression of these genes in haploid mutants that also produce enlarged size. Surprisingly, many genes differentially regulated in the tetraploid are identically regulated in the enlarged haploids, and the magnitude of change in gene expression correlates with the degree of size enlargement. These results indicate a causal relationship between cell size and transcription, with a size-sensing mechanism that alters transcription in response to size. The genes responding to cell size are enriched for those regulated by two mitogen-activated protein kinase pathways, and components in those pathways were found to mediate size-dependent gene regulation. Transcriptional adjustment to enlarged cell size could underlie other cellular changes associated with polyploidy. The causal relationship between cell size and transcription suggests that cell size homeostasis serves a regulatory role in transcriptome maintenance.National Institutes of Health (U.S.) (grant GM035010)National Institutes of Health (U.S.) (grant GM040266
The +4G Site in Kozak Consensus Is Not Related to the Efficiency of Translation Initiation
The optimal context for translation initiation in mammalian species is GCCRCCaugG (where R = purine and “aug” is the initiation codon), with the -3R and +4G being particularly important. The presence of +4G has been interpreted as necessary for efficient translation initiation. Accumulated experimental and bioinformatic evidence has suggested an alternative explanation based on amino acid constraint on the second codon, i.e., amino acid Ala or Gly are needed as the second amino acid in the nascent peptide for the cleavage of the initiator Met, and the consequent overuse of Ala and Gly codons (GCN and GGN) leads to the +4G consensus. I performed a critical test of these alternative hypotheses on +4G based on 34169 human protein-coding genes and published gene expression data. The result shows that the prevalence of +4G is not related to translation initiation. Among the five G-starting codons, only alanine codons (GCN), and glycine codons (GGN) to a much smaller extent, are overrepresented at the second codon, whereas the other three codons are not overrepresented. While highly expressed genes have more +4G than lowly expressed genes, the difference is caused by GCN and GGN codons at the second codon. These results are inconsistent with +4G being needed for efficient translation initiation, but consistent with the proposal of amino acid constraint hypothesis
Trajectories of Delinquency and Parenting Styles
We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering ages 10–19, we identified five distinct delinquency trajectories differing in both level and change in seriousness over time: a nondelinquent, minor persisting, moderate desisting, serious persisting, and serious desisting trajectory. More serious delinquents tended to more frequently engage in delinquency, and to report a higher proportion of theft. Proportionally, serious persistent delinquents were the most violent of all trajectory groups. Using cluster analysis we identified three parenting styles: authoritative, authoritarian (moderately supportive), and neglectful (punishing). Controlling for demographic characteristics and childhood delinquency, neglectful parenting was more frequent in moderate desisters, serious persisters, and serious desisters, suggesting that parenting styles differentiate non- or minor delinquents from more serious delinquents
Transcriptome map of mouse isochores
<p>Abstract</p> <p>Background</p> <p>The availability of fully sequenced genomes and the implementation of transcriptome technologies have increased the studies investigating the expression profiles for a variety of tissues, conditions, and species. In this study, using RNA-seq data for three distinct tissues (brain, liver, and muscle), we investigate how base composition affects mammalian gene expression, an issue of prime practical and evolutionary interest.</p> <p>Results</p> <p>We present the transcriptome map of the mouse isochores (DNA segments with a fairly homogeneous base composition) for the three different tissues and the effects of isochores' base composition on their expression activity. Our analyses also cover the relations between the genes' expression activity and their localization in the isochore families.</p> <p>Conclusions</p> <p>This study is the first where next-generation sequencing data are used to associate the effects of both genomic and genic compositional properties to their corresponding expression activity. Our findings confirm previous results, and further support the existence of a relationship between isochores and gene expression. This relationship corroborates that isochores are primarily a product of evolutionary adaptation rather than a simple by-product of neutral evolutionary processes.</p
- …