333 research outputs found

    Global constraints on a heavy neutrino

    Full text link

    High-Intensity and High-Brightness Source of Moderated Positrons Using a Brilliant gamma Beam

    Full text link
    Presently large efforts are conducted towards the development of highly brilliant gamma beams via Compton back scattering of photons from a high-brilliance electron beam, either on the basis of a normal-conducting electron linac or a (superconducting) Energy Recovery Linac (ERL). Particularly ERL's provide an extremely brilliant electron beam, thus enabling to generate highest-quality gamma beams. A 2.5 MeV gamma beam with an envisaged intensity of 10^15 s^-1, as ultimately envisaged for an ERL-based gamma-beam facility, narrow band width (10^-3), and extremely low emittance (10^-4 mm^2 mrad^2) offers the possibility to produce a high-intensity bright polarized positron beam. Pair production in a face-on irradiated W converter foil (200 micron thick, 10 mm long) would lead to the emission of 2 x 10^13 (fast) positrons per second, which is four orders of magnitude higher compared to strong radioactive ^22Na sources conventionally used in the laboratory.Using a stack of converter foils and subsequent positron moderation, a high-intensity low-energy beam of moderated positrons can be produced. Two different source setups are presented: a high-brightness positron beam with a diameter as low as 0.2 mm, and a high-intensity beam of 3 x 10^11 moderated positrons per second. Hence, profiting from an improved moderation efficiency, the envisaged positron intensity would exceed that of present high-intensity positron sources by a factor of 100.Comment: 9 pages, 3 figure

    Sensitivities of Low Energy Reactor Neutrino Experiments

    Full text link
    The low energy part of the reactor neutrino spectra has not been experimentally measured. Its uncertainties limit the sensitivities in certain reactor neutrino experiments. The origin of these uncertainties are discussed, and the effects on measurements of neutrino interactions with electrons and nuclei are studied. Comparisons are made with existing results. In particular, the discrepancies between previous measurements with Standard Model expectations can be explained by an under-estimation of the low energy reactor neutrino spectra. To optimize the experimental sensitivities, measurements for \nuebar-e cross-sections should focus on events with large (>>1.5 MeV) recoil energy while those for neutrino magnetic moment searches should be based on events <<100 keV. The merits and attainable accuracies for neutrino-electron scattering experiments using artificial neutrino sources are discussed.Comment: 25 pages, 9 figure

    Components of Antineutrino Emission in Nuclear Reactor

    Full text link
    New νˉe,e{\bar{\nu}_e},e scattering experiments aimed for sensitive searches of the νe{\nu}_e magnetic moment and projects to explore small mixing angle oscillations at reactors call for a better understanding of the reactor antineutrino spectrum. Here we consider six components, which contribute to the total νˉe{\bar{\nu}_e} spectrum generated in nuclear reactor. They are: beta decay of the fission fragments of 235^{235}U, 239^{239}Pu, 238^{238}U and 241^{241}Pu, decay of beta-emitters produced as a result of neutron capture in 238^{238}U and also due to neutron capture in accumulated fission fragments which perturbs the spectrum. For antineutrino energies less than 3.5 MeV we tabulate evolution of νˉe{\bar{\nu}_e} spectra corresponding to each of the four fissile isotopes vs fuel irradiation time and their decay after the irradiation is stopped and also estimate relevant uncertainties. Small corrections to the ILL spectra are considered.Comment: LaTex 8 pages, 2 ps figure

    The nucleus ^198 Au investigated with neutron capture and transfer reactions. II. Construction of the level scheme and calculation of level densities

    Get PDF
    The level scheme of ^198 Au was constructed. Up to 1560 keV a total of 111 (d,p) and 125 (n,gamma) levels was included, frequently with spin and parity assignments. The results for level densities are calculated in interacting boson-fermion-fermion model (IBFFM) and Gaussian polynomial method (GPM) and are compared to the present data

    The nucleus ^198 Au investigated with neutron capture and transfer reactions I. Experiments and evaluation

    Get PDF
    The transfer reaction ^197 Au(d,p)^198 Au was measured at the Tandem Accelerator in Munich. The ^197 Au(n,gamma)^198 Au and ^197 Au(n,e)^198 Au reactions were performed at the High Flux Reactor of ILL, Grenoble. Up to 1560 keV a total of 111 levels were observed by the (d,p) reaction and 125 by the (n,gamma) reaction. For many of the levels, spins and parities were assigned. Additional information was obtained from summed (n,gamma gamma) coincidences measured in Dubna
    corecore