213 research outputs found

    Simultaneous Excitation of Spins and Pseudospins in the Bilayer ν=1\nu=1 Quantum Hall State

    Full text link
    The tilting angular dependence of the energy gap was measured in the bilayer quantum Hall state at the Landau level filling ν=1\nu=1 by changing the density imbalance between the two layers. The observed gap behavior shows a continuous transformation from the bilayer balanced density state to the monolayer state. Even a sample with 33 K tunneling gap shows the same activation energy anomaly reported by Murphy {\it et al.}. We discuss a possible relation between our experimental results and the quantum Hall ferromagnet of spins and pseudospins.Comment: 4 pages, 4 figure

    Skyrmion Physics Beyond the Lowest Landau Level Approximation

    Get PDF
    The effects of Landau level mixing and finite thickness of the two-dimensional electron gas on the relative stability of skyrmion and single spin-flip excitations at Landau level filling factor ν=1\nu=1 have been investigated. Landau level mixing is studied by fixed-phase diffusion Monte Carlo and finite thickness is included by modifying the effective Coulomb interaction. Both Landau level mixing and finite thickness lower skyrmion excitation energies and favor skyrmions with fewer spin flips. However, the two effects do not work `coherently'. When finite thickness is included the effect of Landau level mixing is strongly suppressed.Comment: 4 pages, 4 figure

    Shape Deformation driven Structural Transitions in Quantum Hall Skyrmions

    Full text link
    The Quantum Hall ground state away from ν=1\nu = 1 can be described by a collection of interacting skyrmions. We show within the context of a nonlinear sigma model, that the classical ground state away from ν=1\nu = 1 is a skyrmion crystal with a generalized N\'eel order. We show that as a function of filling ν\nu, the skyrmion crystal undergoes a triangle to square to triangle transition at zero temperature. We argue that this structural transition, driven by a change in the shape of the individual skyrmions, is stable to thermal and quantum fluctuations and may be probed experimentally.Comment: 4 pages (REVTEX) and 4 .eps figure

    Acoustically driven storage of light in a quantum well

    Full text link
    The strong piezoelectric fields accompanying a surface acoustic wave on a semiconductor quantum well structure are employed to dissociate optically generated excitons and efficiently trap the created electron hole pairs in the moving lateral potential superlattice of the sound wave. The resulting spatial separation of the photogenerated ambipolar charges leads to an increase of the radiative lifetime by orders of magnitude as compared to the unperturbed excitons. External and deliberate screening of the lateral piezoelectric fields triggers radiative recombination after very long storage times at a remote location on the sample.Comment: 4 PostScript figures included, Physical Review Letters, in pres

    Tunneling into Ferromagnetic Quantum Hall States: Observation of a Spin Bottleneck

    Full text link
    We explore the characteristics of equilibrium tunneling of electrons from a 3D electrode into a high mobility 2D electron system. For most 2D Landau level filling factors, we find that tunneling can be characterized by a single, well-defined tunneling rate. However, for spin-polarized quantum Hall states (nu = 1, 3 and 1/3) tunneling occurs at two distinct rates that differ by up to 2 orders of magnitude. The dependence of the two rates on temperature and tunnel barrier thickness suggests that slow in-plane spin relaxation creates a bottleneck for tunneling of electrons.Comment: 5 pages, 4 figures, submitted to PR

    Skyrmionic excitons

    Full text link
    We investigate the properties of a Skyrmionic exciton consisting of a negatively charged Skyrmion bound to a mobile valence hole. A variational wave function is constructed which has the generalized total momentum P as a good quantum number. It is shown that the Skyrmionic exciton can have a larger binding energy than an ordinary magnetoexciton and should therefore dominate the photoluminescence spectrum in high-mobility quantum wells and heterojunctions where the electron-hole separation exceeds a critical value. The dispersion relation for the Skyrmionic exciton is discussed.Comment: 9 pages, RevTex, 2 PostScript figures. Replaced with version to appear in Phys. Rev. B Rapid Communications. Short discussion of variational state adde

    Quantum Phase Transition in Skyrmion Lattices

    Full text link
    We investigate the ground state of 2D electron gas in Quantum Hall regime at the filling factor slightly deviating from unity, that can be viewed as a sparse lattice of skyrmions. We have found that in the low density limit skyrmions are bound in pairs, those forming the actual lattice. We have shown that at further density increase the lattice undergoes a quantum phase transition, an analogue of superconducting phase transition in Josephson junction arrays.Comment: 4 pages REVTEX, 3 Postscript figure

    Effect of the Equivalence Between Topological and Electric Charge on the Magnetization of the Hall Ferromagnet

    Full text link
    The dependence on temperature of the spin magnetization of a two-dimensional electron gas at filling factor unity is studied. Using classical Monte Carlo simulations we analyze the effect that the equivalence between topological and electrical charge has on the the behavior of the magnetization. We find that at intermediate temperatures the spin polarization increases in a thirty per cent due to the Hartree interaction between charge fluctuations.Comment: 4 pages. Submitted to Phys.Rev.

    Massive skyrmions in quantum Hall ferromagnets

    Full text link
    We apply the theory of elasticity to study the effects of skyrmion mass on lattice dynamics in quantum Hall systems. We find that massive Skyrme lattices behave like a Wigner crystal in the presence of a uniform perpendicular magnetic field. We make a comparison with the microscopic Hartree-Fock results to characterize the mass of quantum Hall skyrmions at ν=1\nu=1 and investigate how the low temperature phase of Skyrme lattices may be affected by the skyrmion mass.Comment: 6 pages and 2 figure

    Thermodynamics of Quantum Hall Ferromagnets

    Full text link
    The two-dimensional interacting electron gas at Landau level filling factor ν=1\nu =1 and temperature T=0T=0 is a strong ferromagnet; all spins are completely aligned by arbitrarily weak Zeeman coupling. We report on a theoretical study of its thermodynamic properties using a many-body perturbation theory approach and concentrating on the recently measured temperature dependence of the spin magnetization. We discuss the interplay of collective and single-particle aspects of the physics and the opportunities for progress in our understanding of itinerant electron ferromagnetism presented by quantum Hall ferromagnets.Comment: REVTex, 10 pages, 3 uuencoded, compressed and tarred PostScript figures appende
    • …
    corecore