2,118 research outputs found

    X-ray tomographic techniques for the study of cultural heritages

    Get PDF
    In recent years, X-ray Computed Tomography (CT) has become an important tool for investigating all kinds of materials. Due to its non-destructive nature, it is especially suitable to investigate samples that may not be altered or damaged during the course of the investigation. CT has been recently introduced in the field of Cultural Heritage diagnostics, where it can be used for the investigation of different works of art, as it preserves the integrity of the object and gives morphological and physical information on its inner structure. This paper describes a methodological approach on the use of the X-ray CT technique to study items belonging to cultural heritage with the aim to obtain information related to their preservation state and therefore, to plan an adequate conservation and restoration procedure. Significant examples of applications are the study of porosity and pore size distribution and their connectivity for different porous materials and the study of kinetics of capillary fluid absorption in sedimentary rocks. Other applications are relevant to the possibility to investigate in a non-destructive way the presence of defects or fractures inside an object and, not last in order of importance, the possibility to study different typologies of woods or waterlogged woods, the presence of an eventual biodegradation state and the possibility to perform a dendrochronology. In this paper, the results of some case studies, obtained through the integrated use of CT systems with different resolutions, are reported. Other expected future developments will be addressed to the integration of CT data with results of compatible non-destructive techniques

    Convolutional Neural Networks for Water segmentation using Sentinel-2 Red, Green, Blue (RGB) composites and derived Spectral Indices

    Get PDF
    Near-real time water segmentation with medium resolution satellite imagery plays a critical role in water management. Automated water segmentation of satellite imagery has traditionally been achieved using spectral indices. Spectral water segmentation is limited by environmental factors and requires human expertise to be applied effectively. In recent years, the use of convolutional neural networks (CNN’s) for water segmentation has been successful when used on high-resolution satellite imagery, but to a lesser extent for medium resolution imagery. Existing studies have been limited to geographically localized datasets and reported metrics have been benchmarked against a limited range of spectral indices. This study seeks to determine if a single CNN based on Red, Green, Blue (RGB) image classification can effectively segment water on a global scale and outperform traditional spectral methods. Additionally, this study evaluates the extent to which smaller datasets (of very complex pattern, e.g harbour megacities) can be used to improve globally applicable CNNs within a specific region. Multispectral imagery from the European Space Agency, Sentinel-2 satellite (10 m spatial resolution) was sourced. Test sites were selected in Florida, New York, and Shanghai to represent a globally diverse range of waterbody typologies. Region-specific spectral water segmentation algorithms were developed on each test site, to represent benchmarks of spectral index performance. DeepLabV3-ResNet101 was trained on 33,311 semantically labelled true-colour samples. The resulting model was retrained on three smaller subsets of the data, specific to New York, Shanghai and Florida. CNN predictions reached a maximum mean intersection over union result of 0.986 and F1-Score of 0.983. At the Shanghai test site, the CNN’s predictions outperformed the spectral benchmark, primarily due to the CNN’s ability to process contextual features at multiple scales. In all test cases, retraining the networks to localized subsets of the dataset improved the localized region’s segmentation predictions. The CNN’s presented are suitable for cloud-based deployment and could contribute to the wider use of satellite imagery for water management

    Climate and environmental data contribute to the prediction of grain commodity prices using deep learning

    Get PDF
    Background: Grain commodities are important to people's daily lives and their fluctuations can cause instability for households. Accurate prediction of grain prices can improve food and social security. Methods & Materials: This study proposes a hybrid Long Short-Term Memory (LSTM)-Convolutional Neural Network (CNN) model to forecast weekly oat, corn, soybean and wheat prices in the United States market. The LSTM-CNN is a multivariate model that uses weather data, macroeconomic data, commodities grain prices and snow factors, including Snow Water Equivalent (SWE), snowfall and snow depth, to make multistep ahead forecasts. Results: Of all the features, the snow factor is used for the first time for commodity price forecasting. We used the LSTM-CNN model to evaluate the 5, 10, 15 and 20 weeks ahead forecasting and this hybrid model had the lowest Mean Squared Error (MSE) at 5, 10 and 15 weeks ahead of prediction. In addition, Shapley values were calculated to analyse the feature contribution of the LSTM-CNN model when forecasting the testing set. Based on the feature contribution, SWE ranked third, fifth and seventh in feature importance in the 5-week ahead forecast for corn, oats and wheat, respectively, and 7–8 places higher than total precipitation, indicating the potential use of SWE in grain price forecasting. Conclusion: The hybrid multivariate LSTM-CNN model outperformed other models and the newly involved climate data, SWE, showed the research potential of using snow as an input variable to predict grain prices over a multistep ahead time horizon

    Lhermitte-Duclos disease presenting with positron emission tomography-magnetic resonance fusion imaging: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Lhermitte-Duclos disease or dysplastic gangliocytoma of the cerebellum is an extremely rare tumor. It is a slowly enlarging mass within the cerebellar cortex. The majority of cases are diagnosed in the third or fourth decade of life.</p> <p>Case presentation</p> <p>We report the case of a 37-year-old Caucasian woman who underwent positron emission tomography-computed tomography with fluorine-18-fluorodeoxyglucose for evaluation of a solitary lung node. No pathological uptake was detected in the solitary lung node but the positron emission tomography-computed tomography of her brain showed intense tracer uptake, suggestive of a malignant neoplasm, in a mass in her left cerebellar lobe. Our patient had experienced two years of occipital headache and movement disorder. Subsequently, magnetic resonance imaging was performed with contrast agent administration, showing a large subtentorial mass in her left cerebellar hemisphere, with compression and dislocation of the fourth ventricle. Metabolic data provided by positron emission tomography and morphological magnetic resonance imaging views were fused in post-processing, allowing a diagnosis of dysplastic gangliocytoma with increased glucose metabolism. Total resection of the tumor was performed and histological examination confirmed the diagnosis of Lhermitte-Duclos disease.</p> <p>Conclusions</p> <p>Our case indicates that increased uptake of fluorine-18-fluorodeoxyglucose may be misinterpreted as a neoplastic process in the evaluation of patients with Lhermitte-Duclos disease, but supports the usefulness of integrated positron emission tomography-magnetic resonance imaging in the exact pathophysiologic explanation of this disease and in making the correct diagnosis. However, an accurate physical examination and exact knowledge of clinical data is of the utmost importance.</p

    Geomorphological processes, forms and features in the surroundings of the Melka Kunture Palaeolithic site, Ethiopia

    Get PDF
    The landscape of the surroundings of the Melka Kunture prehistoric site, Upper Awash Basin, Ethiopia, were studied intensively in the last decades. Nonetheless, the area was mainly characterized under a stratigraphic/geological and archaeological point of view. However, a detailed geomorphological map is still lacking. Hence, in this study, we identify, map and visualize geomorphological forms and processes. The morphology of the forms, as well as the related processes, were remotely sensed with available high-resolution airborne and satellite sources and calibrated and validated through extensive field work conducted in 2013 and 2014. Furthermore, we integrated multispectral satellite imagery to classify areas affected by intensive erosion processes and/or anthropic activities. The Main Map at 1:15,000 scale reveals structural landforms as well as intensive water-related degradation processes in the Upper Awash Basin. Moreover, the map is available as an interactive WebGIS application providing further information and detail (www.roceeh.net/ethiopia_ geomorphological_map/)

    Mitogenomics of macaques (Macaca) across Wallace's Line in the context of modern human dispersals

    No full text
    Wallace's Line demarcates a biogeographical boundary between the Indomalaya and Australasian ecoregions. Most placental mammalian genera, for example, occur to the west of this line, whereas most marsupial genera occur to the east. However, macaque monkeys are unusual because they naturally occur on both western and eastern sides. To further explore this anomalous distribution, we analyzed 222 mitochondrial genomes from ∼20 macaque species, including new genomes from 60 specimens. These comprise a population sampling of most Sulawesi macaques, Macaca fascicularis (long-tailed macaques) specimens that were collected by Alfred R. Wallace and specimens that were recovered during archaeological excavations at Liang Bua, a cave on the Indonesian island of Flores. In M. fascicularis, three mitochondrial lineages span the southernmost portion of Wallace's Line between Bali and Lombok, and divergences within these lineages are contemporaneous with, and possibly mediated by, past dispersals of modern human populations. Near the central portion of Wallace's Line between Borneo and Sulawesi, a more ancient dispersal of macaques from mainland Asia to Sulawesi preceded modern human colonization, which was followed by rapid dispersal of matrilines and was subsequently influenced by recent interspecies hybridization. In contrast to previous studies, we find no strong signal of recombination in most macaque mitochondrial genomes. These findings further characterize macaque evolution before and after modern human dispersal throughout Southeast Asia and point to possible effects on biodiversity of ancient human cultural diasporas

    States of 15C via the (18O,16O) reaction

    Get PDF
    A study of the 15C states was pursued in 2008 at the Catania INFN-LNS laboratory by the 13C(18O,16O)15C reaction at 84 MeV incident energy. The 16O ejectiles were detected at forward angles by the MAGNEX magnetic spectrometer. Thanks to an innovative technique the ejectiles were identified without the need of time of flight measurements. Exploiting the large momentum acceptance (25%) and solid angle (50 msr) of the spectrometer, the 15C energy spectra were obtained with a quite relevant yield up to about 20 MeV excitation energy. The application of the powerful technique of the trajectory reconstruction did allow to get an energy resolution of about 250 keV FWHM, limited mainly by straggling effects. The spectra show several known low lying states up to about 7 MeV excitation energy as well as two unknown resonant structures at about 11.4 and 13.5 MeV. The strong excitation of these latter together with the measured width of about 2 MeV FWHM could indicate the presence of collective modes of excitation connected to the transfer of a correlated neutron pair

    Subxiphoid completion thymectomy for refractory non-thymomatous myasthenia gravis

    Get PDF
    Background: Completion thymectomy may be performed in patients with non-thymomatous refractory myasthenia gravis (MG) to allow a complete and definitive clearance from residual thymic tissue located in the mediastinum or in lower neck. Hereby we present our short- and long-term results of completion thymectomy using subxiphoid video-assisted thoracoscopy.Methods: Between July 2010 and December 2017, 15 consecutive patients with refractory non-thymomatous myasthenia, 8 women and 7 men with a median age of 44 [interquartile range (IQR) 38.5-53.5] years, underwent video-thoracoscopic completion thymectomy through a subxiphoid approach.Results: Positron emission tomography (PET) showed mildly avid areas [standardized uptake value (SUV) more than or equal to 1.8] in 11 instances. Median operative time was 106 (IQR, 77-141) minutes. No operative deaths nor major morbidity occurred. Mean 1-day postoperative Visual Analogue Scale value was 2.53 +/- 0.63. Median hospital stay was 2 (IQR, 1-3.5) days. A significant decrease of the anti-acetylcholine receptor antibodies was observed after 1 month [median percentage changes -67% (IQR, -39% to -83%)]. Median follow-up was 45 (IQR, 21-58) months. At the most recent follow-up complete stable remission was achieved in 5 patients. Another 9 patients had significant improvement in bulbar and limb function, requiring lower doses of corticosteroids and anticholinesterase drugs. Only one patient remained clinically stable albeit drug doses were reduced. One-month postoperative drop of anti-acetylcholine receptor antibodies was significantly correlated with complete stable remission (P=0.002).Conclusions: This initial experience confirms that removal of ectopic and residual thymus through a subxiphoid approach can reduce anti-acetylcholine receptor antibody titer correlating to good outcome of refractory MG

    Mechanical design and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    Full text link
    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling ~5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.Comment: 9 pages, 5 figures, SPIE Astronomical Telescopes and Instrumentation conference proceeding
    corecore