400 research outputs found

    Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation

    Get PDF
    We previously established an efficient Agrobacterium-mediated transformation system using primary calli derived from mature seeds of the model japonica rice variety Nipponbare. We expected that the shortened tissue culture period would reduce callus browning—a common problem with the indica transformation system during prolonged tissue culture in the undifferentiated state. In this study, we successfully applied our efficient transformation system to Kasalath—a model variety of indica rice. The Luc reporter system is sensitive enough to allow quantitative analysis of the competency of rice callus for Agrobacterium-mediated transformation. We unexpectedly discovered that primary callus of Kasalath exhibits a remarkably high competency for Agrobacterium-mediated transformation compared to Nipponbare. Southern blot analysis and Luc luminescence showed that independent transformation events in primary callus of Kasalath occurred successfully at ca. tenfold higher frequency than in Nipponbare, and single copy T-DNA integration was observed in ~40% of these events. We also compared the competency of secondary callus of Nipponbare and Kasalath and again found superior competency in Kasalath, although the identification and subsequent observation of independent transformation events in secondary callus is difficult due to the vigorous growth of both transformed and non-transformed cells. An efficient transformation system in Kasalath could facilitate the identification of QTL genes, since many QTL genes are analyzed in a Nipponbare × Kasalath genetic background. The higher transformation competency of Kasalath could be a useful trait in the establishment of highly efficient systems involving new transformation technologies such as gene targeting

    Effect of bond lifetime on the dynamics of a short-range attractive colloidal system

    Full text link
    We perform molecular dynamics simulations of short-range attractive colloid particles modeled by a narrow (3% of the hard sphere diameter) square well potential of unit depth. We compare the dynamics of systems with the same thermodynamics but different bond lifetimes, by adding to the square well potential a thin barrier at the edge of the attractive well. For permanent bonds, the relaxation time τ\tau diverges as the packing fraction ϕ\phi approaches a threshold related to percolation, while for short-lived bonds, the ϕ\phi-dependence of τ\tau is more typical of a glassy system. At intermediate bond lifetimes, the ϕ\phi-dependence of τ\tau is driven by percolation at low ϕ\phi, but then crosses over to glassy behavior at higher ϕ\phi. We also study the wavevector dependence of the percolation dynamics.Comment: Revised; 9 pages, 9 figure

    Liquid Polymorphism and Double Criticality in a Lattice Gas Model

    Full text link
    We analyze the possible phase diagrams of a simple model for an associating liquid proposed previously. Our two-dimensional lattice model combines oreintati onal ice-like interactions and \"{}Van der Waals\"{} interactions which may be repulsive, and in this case represent a penalty for distortion of hydrogen bonds in the presence of extra molecules. These interactions can be interpreted in terms of two competing distances, but not necessarily soft-core. We present mean -field calculations and an exhaustive simulation study for different parameters which represent relative strength of the bonding interaction to the energy penalty for its distortion. As this ratio decreases, a smooth disappearance of the doubl e criticality occurs. Possible connections to liquid-liquid transitions of molecul ar liquids are suggested

    Molecular structural order and anomalies in liquid silica

    Full text link
    The present investigation examines the relationship between structural order, diffusivity anomalies, and density anomalies in liquid silica by means of molecular dynamics simulations. We use previously defined orientational and translational order parameters to quantify local structural order in atomic configurations. Extensive simulations are performed at different state points to measure structural order, diffusivity, and thermodynamic properties. It is found that silica shares many trends recently reported for water [J. R. Errington and P. G. Debenedetti, Nature 409, 318 (2001)]. At intermediate densities, the distribution of local orientational order is bimodal. At fixed temperature, order parameter extrema occur upon compression: a maximum in orientational order followed by a minimum in translational order. Unlike water, however, silica's translational order parameter minimum is broad, and there is no range of thermodynamic conditions where both parameters are strictly coupled. Furthermore, the temperature-density regime where both structural order parameters decrease upon isothermal compression (the structurally anomalous regime) does not encompass the region of diffusivity anomalies, as was the case for water.Comment: 30 pages, 8 figure

    Metastable liquid-liquid phase transition in a single-component system with only one crystal phase and no density anomaly

    Get PDF
    We investigate the phase behavior of a single-component system in 3 dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distance, and a hard-core repulsion at a short distance, similar to potentials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We showed [Nature {\bf 409}, 692 (2001)] that, even with no evidences of the density anomaly, the phase diagram has two first-order fluid-fluid phase transitions, one ending in a gas--low-density liquid (LDL) critical point, and the other in a gas--high-density liquid (HDL) critical point, with a LDL-HDL phase transition at low temperatures. Here we use integral equation calculations to explore the 3-parameter space of the soft-core potential and we perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase diagram we analyze the structure of the crystal phase and find that, within the considered range of densities, the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We suggest that this absence is related to the presence of only one stable crystal structure.Comment: 15 pages, 21 figure

    Intra-molecular coupling as a mechanism for a liquid-liquid phase transition

    Get PDF
    We study a model for water with a tunable intra-molecular interaction JσJ_\sigma, using mean field theory and off-lattice Monte Carlo simulations. For all Jσ0J_\sigma\geq 0, the model displays a temperature of maximum density.For a finite intra-molecular interaction Jσ>0J_\sigma > 0,our calculations support the presence of a liquid-liquid phase transition with a possible liquid-liquid critical point for water, likely pre-empted by inevitable freezing. For J=0 the liquid-liquid critical point disappears at T=0.Comment: 8 pages, 4 figure

    Transperitoneal laparoscopic right radical nephrectomy for renal cell carcinoma and end-stage renal disease: a case report

    Get PDF
    Nephron-sparing surgery (partial nephrectomy) results are similar to those of radical nephrectomy for small (<4 cm) renal tumors. However, in patients with end-stage renal disease, radical nephrectomy emerges as a more efficient treatment for localized renal cell cancer. Laparoscopic radical nephrectomy (LRN) increasingly is being performed. The objective of the present study was to present a case of a patient under hemodialysis who was submitted to LRN for a small renal mass and discuss the current issues concerning this approach. It appears that radical nephrectomy should be the standard treatment in dialysis patients even for small tumors. The laparoscopic technique is associated with acceptable cancer-specific survival and recurrence rate along with shorter hospital stay, less postoperative pain and earlier return to normal activities

    Equilibration times in numerical simulation of structural glasses: Comparing parallel tempering and conventional molecular dynamics

    Full text link
    Generation of equilibrium configurations is the major obstacle for numerical investigation of the slow dynamics in supercooled liquid states. The parallel tempering (PT) technique, originally proposed for the numerical equilibration of discrete spin-glass model configurations, has recently been applied in the study of supercooled structural glasses. We present an investigation of the ability of parallel tempering to properly sample the liquid configuration space at different temperatures, by mapping the PT dynamics into the dynamics of the closest local potential energy minima (inherent structures). Comparing the PT equilibration process with the standard molecular dynamics equilibration process we find that the PT does not increase the speed of equilibration of the (slow) configurational degrees of freedom.Comment: 5 pages, 3 figure

    Could salvage surgery after chemotherapy have clinical impact on cancer survival of patients with metastatic urothelial carcinoma?

    Get PDF
    The clinical impact of salvage surgery after chemotherapy on cancer survival of patients with metastatic urothelial carcinoma is controversial. We aimed to verify the clinical role of salvage surgery by analyzing the long-term outcome in patients with urothelial carcinoma treated by chemotherapy. Between 2003 and 2010 at a single institution, 31 of 47 patients (66%) with metastatic urothelial carcinoma showed objective responses (CR in 4, PR in 27) after multiple courses of cisplatin/gemcitabine/paclitaxel-based chemotherapy, and a cohort of patients with partial response (PR) were retrospectively enrolled. Twelve (10 male and 2 female, median age 64.0 years) of 27 patients with PR underwent salvage surgeries after the chemotherapy: metastatectomy of residual lesions (10 retroperitoneal lymph nodes, 2 lung), and 6 radical surgeries for primary lesions as well. Progression-free survival and overall patient survival rates were analyzed retrospectively and compared with those of patients without salvage surgery. All 12 patients achieved surgical CR. Pathological findings of metastatic lesions showed viable cancer cells in 3 patients. In univariate analysis, sole salvage surgery affected overall survival in 27 patients with PR to the chemotherapy (P = 0.0037). Progression-free survival and overall survival rates in patients with salvage surgery were better than those in 15 PR patients without the surgery (39.8 vs. 0%, and 71.6 vs. 12.1% at 3 years, P = 0.01032 and 0.01048; log-rank test). Salvage surgery for patients with residual tumor who achieve partial response to chemotherapy could have a possible impact on cancer survival
    corecore