662 research outputs found

    Scattering theory with finite-gap backgrounds: Transformation operators and characteristic properties of scattering data

    Full text link
    We develop direct and inverse scattering theory for Jacobi operators (doubly infinite second order difference operators) with steplike coefficients which are asymptotically close to different finite-gap quasi-periodic coefficients on different sides. We give necessary and sufficient conditions for the scattering data in the case of perturbations with finite second (or higher) moment.Comment: 23 page

    Improving the efficiency of university management : teacher’s performance monitoring as a tool to promote the quality of education

    Get PDF
    This study aims to examine the essence of education monitoring, its place in the higher education management system and the practical implementation of teacher’s performance monitoring as a tool to promote the quality of education. The article considers theoretical aspects of monitoring as a tool to promote the quality of education, assesses the performance of the university departments, research and teaching staff and discusses the results and suggestions on how to improve monitoring activities in higher education. Based on their research and findings, the authors claimed that the monitoring of the performance of the university research and teaching staff on the base of an indicator system in terms of education, methodology, research, organization and counselling services would lead to valid conclusions as to the effective performance of both individual researchers and teachers and university departments, in general.peer-reviewe

    On UHECR energy estimation algorithms based on the measurement of electromagnetic component parameters in EAS

    Full text link
    Model calculations are performed of extensive air shower (EAS) component energies using a variety of hadronic interaction parameters. A conversion factor from electromagnetic component energy to the energy of ultra-high energy cosmic rays (UHECRs) and its model and primary mass dependence is studied. It is shown that model dependence of the factor minimizes under the necessary condition of the same maximum position and muon content of simulated showers.Comment: contracted version is accepted for publication in Doklady Physic

    The 1986?1989 ENSO cycle in a chemical climate model

    No full text
    International audienceA pronounced ENSO cycle occurred from 1986 to 1989, accompanied by distinct dynamical and chemical anomalies in the global troposphere and stratosphere. Reproducing these effects with current climate models not only provides a model test but also contributes to our still limited understanding of ENSO's effect on stratosphere-troposphere coupling. We performed several sets of ensemble simulations with a chemical climate model (SOCOL) forced with global sea surface temperatures. Results were compared with observations and with large-ensemble simulations performed with an atmospheric general circulation model (MRF9). We focus our analysis on the extratropical stratosphere and its coupling with the troposphere. In this context, the circulation over the North Atlantic sector is particularly important. Observed differences between the El Niño winter 1987 and the La Niña winter 1989 include a negative North Atlantic Oscillation index with corresponding changes in temperature and precipitation patterns, a weak polar vortex, a warm Arctic middle stratosphere, negative and positive total ozone anomalies in the tropics and at middle to high latitudes, respectively, as well as anomalous upward and poleward Eliassen-Palm (EP) flux in the midlatitude lower stratosphere. Most of the tropospheric features are well reproduced in the ensemble means in both models, though the amplitudes are underestimated. In the stratosphere, the SOCOL simulations compare well with observations with respect to zonal wind, temperature, EP flux, and ozone, but magnitudes are underestimated in the middle stratosphere. The polar vortex strength is well reproduced, but within-ensemble variability is too large for obtaining a significant signal in Arctic temperature and ozone. With respect to the mechanisms relating ENSO to stratospheric circulation, the results suggest that both, upward and poleward components of anomalous EP flux are important for obtaining the stratospheric signal and that an increase in strength of the Brewer-Dobson circulation is part of that signal

    Spatial beam self-cleaning and supercontinuum generation with Yb-doped multimode graded-index fiber taper based on accelerating self-imaging and dissipative landscape

    Get PDF
    We experimentally demonstrate spatial beam self-cleaning and supercontinuum generation in a tapered Ytterbium-doped multimode optical fiber with parabolic core refractive index profile when 1064 nm pulsed beams propagate from wider (122 µm) into smaller (37 µm) diameter. In the passive mode, increasing the input beam peak power above 20 kW leads to a bell-shaped output beam profile. In the active configuration, gain from the pump laser diode permits to combine beam self-cleaning with supercontinuum generation between 520-2600 nm. By taper cut-back, we observed that the dissipative landscape, i.e., a non-monotonic variation of the average beam power along the MMF, leads to modal transitions of self-cleaned beams along the taper length

    Effect of Fe content on atomic and electronic structure of complex oxides Sr Ti,Fe O3 delta

    Get PDF
    Two series of SrTi1 xFexO3 amp; 948; STFO powders with different Fe content produced by two different methods, solid state reaction or modified Pechini synthesis, have been investigated by soft X ray absorption spectroscopy. The O1s K , Fe2p L2,3 and Ti2p L2,3 absorption spectra of STFO powders were analyzed. Partial substitution of Ti by Fe atoms in SrTiO3 were found to cause asymmetric distortion of TiO6 octahedrons which may violate the cubic symmetry of STFO. It was established that the distortion of TiO6 octahedrons increases with increasing Fe content. The joint analysis of the STFO spectra along with the reference compounds points to the presence mainly of Fe3 states in octahedral environment at small concentration of Fe atoms along with essentially smaller content of Fe4 states in octahedral environment where the latter contribution increases with increasing Fe content. Also a presence of Fe3 states in tetrahedral environment with Fe content higher than 50 is traced. A certain amount of Fe2 ions in an octahedral environment was also found in the STFO compound prepared by spray pyrolysis with Fe content higher than 75 . The O1s K absorption spectra point to increase in oxygen vacancy concentration with increasing Fe content. The lowest degree of structure distortions was traced in STFO35. Hence, the STFO35 compound seems to be mostly appropriate for technical application

    Muon content of ultra-high-energy air showers: Yakutsk data versus simulations

    Full text link
    We analyse a sample of 33 extensive air showers (EAS) with estimated primary energies above 2\cdot 10^{19} eV and high-quality muon data recorded by the Yakutsk EAS array. We compare, event-by-event, the observed muon density to that expected from CORSIKA simulations for primary protons and iron, using SIBYLL and EPOS hadronic interaction models. The study suggests the presence of two distinct hadronic components, ``light'' and ``heavy''. Simulations with EPOS are in a good agreement with the expected composition in which the light component corresponds to protons and the heavy component to iron-like nuclei. With SYBILL, simulated muon densities for iron primaries are a factor of \sim 1.5 less than those observed for the heavy component, for the same electromagnetic signal. Assuming two-component proton-iron composition and the EPOS model, the fraction of protons with energies E>10^{19} eV is 0.52^{+0.19}_{-0.20} at 95% confidence level.Comment: 8 pages, 3 figures; v2: replaced with journal versio

    Technical Note: Chemistry-climate model SOCOL: version 2.0 with improved transport and chemistry/microphysics schemes

    Get PDF
    International audienceWe describe version 2.0 of the chemistry-climate model (CCM) SOCOL. The new version includes fundamental changes of the transport scheme such as transporting all chemical species of the model individually and applying a family-based correction scheme for mass conservation for species of the nitrogen, chlorine and bromine groups, a revised transport scheme for ozone, furthermore more detailed halogen reaction and deposition schemes, and a new cirrus parameterisation in the tropical tropopause region. By means of these changes the model manages to overcome or considerably reduce deficiencies recently identified in SOCOL version 1.1 within the CCM Validation activity of SPARC (CCMVal). In particular, as a consequence of these changes, regional mass loss or accumulation artificially caused by the semi-Lagrangian transport scheme can be significantly reduced, leading to much more realistic distributions of the modelled chemical species, most notably of the halogens and ozone
    • …
    corecore