525 research outputs found

    Mind over memory: cueing the aging brain

    Get PDF
    A decline in recollection is a hallmark of even healthy aging and is associated with wider impairments in mental control. Older adults have difficulty internally directing thought and action in line with their goals, and often rely more on external cues. To assess the impact this has on memory, emerging brain-imaging and behavioral approaches investigate the operation and effectiveness of goal-directed control before information is retrieved. Current data point to effects of aging at more than one stage in this process, particularly in the face of competing goals. These effects may reflect wider changes in the proactive, self-initiated regulation of thought and action. Understanding them is essential for establishing whether internal “self-cuing” of memory can be improved, and whether—and when—it is best to use environmental support from external cues to maximize memory performance

    Medial frontal cortex function: An introduction and overview

    Full text link

    Strategic prioritisation enhances young and older adults’ visual feature binding in working memory

    Get PDF
    Visual working memory for features and bindings is susceptible to age-related decline. Two experiments were used to examine whether older adults are able to strategically prioritise more valuable information in working memory and whether this could reduce age-related impairments. Younger (18–33 years) and older (60–90 years) adults were presented with coloured shapes and, following a brief delay, asked to recall the feature that had accompanied the probe item. In Experiment 1, participants were either asked to prioritise a more valuable object in the array (serial position 1, 2, or 3) or to treat them all equally. Older adults exhibited worse overall memory performance but were as able as younger adults to prioritise objects. In both groups, this ability was particularly apparent at the middle serial position. Experiment 2 then explored whether younger and older adults’ prioritisation is affected by presentation time. Replicating Experiment 1, older adults were able to prioritise the more valuable object in working memory, showing equivalent benefits and costs as younger adults. However, processing speed, as indexed by presentation time, was shown not to limit strategic prioritisation in either age group. Taken together, these findings demonstrate that, although older adults have poorer visual working memory overall, the ability to strategically direct attention to more valuable items in working memory is preserved across ageing

    Neural Circuitry of Emotional and Cognitive Conflict Revealed through Facial Expressions

    Get PDF
    Neural systems underlying conflict processing have been well studied in the cognitive realm, but the extent to which these overlap with those underlying emotional conflict processing remains unclear. A novel adaptation of the AX Continuous Performance Task (AX-CPT), a stimulus-response incompatibility paradigm, was examined that permits close comparison of emotional and cognitive conflict conditions, through the use of affectively-valenced facial expressions as the response modality.Brain activity was monitored with functional magnetic resonance imaging (fMRI) during performance of the emotional AX-CPT. Emotional conflict was manipulated on a trial-by-trial basis, by requiring contextually pre-cued facial expressions to emotional probe stimuli (IAPS images) that were either affectively compatible (low-conflict) or incompatible (high-conflict). The emotion condition was contrasted against a matched cognitive condition that was identical in all respects, except that probe stimuli were emotionally neutral. Components of the brain cognitive control network, including dorsal anterior cingulate cortex (ACC) and lateral prefrontal cortex (PFC), showed conflict-related activation increases in both conditions, but with higher activity during emotion conditions. In contrast, emotion conflict effects were not found in regions associated with affective processing, such as rostral ACC.These activation patterns provide evidence for a domain-general neural system that is active for both emotional and cognitive conflict processing. In line with previous behavioural evidence, greatest activity in these brain regions occurred when both emotional and cognitive influences additively combined to produce increased interference

    When group members admit to being conformist: the role of relative intragroup status in conformity self-reports

    Get PDF
    Authors' draft; final version published in Personality and Social Psychology BulletinFive studies examined the hypothesis that people will strategically portray the self as being more group influenced the more junior they feel within the group. Among social psychologists (Study 1), ratings of self-conformity by group members were greater when the status of the participant was low than when it was high. These effects were replicated in Studies 2, 3, and 4 in which relative intragroup status was manipulated. In Study 3, the authors found junior group members described themselves as more conformist than senior members when they were addressing an ingroup audience, but when they were addressing an outgroup audience the effect disappeared. Furthermore, junior members (but not senior members) rated themselves as more conformist when they were led to believe their responses were public than when responses were private (Study 5). The discussion focuses on the strategic processes underlying low-status group members’ self-reports of group influence and the functional role of conformity in groups

    The role of response modalities in cognitive task representations

    Get PDF
    The execution of a task necessitates the use of a specific response modality. We examined the role of different response modalities by using a task-switching paradigm. In Experiment 1, subjects switched between two numerical judgments, whereas response modality (vocal vs. manual vs. foot responses) was manipulated between groups. We found judgment-shift costs in each group, that is irrespective of the response modality. In Experiment 2, subjects switched between response modalities (vocal vs. manual, vocal vs. foot, or manual vs. foot). We observed response-modality shift costs that were comparable in all groups. In sum, the experiments suggest that the response modality (combination) does not affect switching per se. Yet, modality-shift costs occur when subjects switch between response modalities. Thus, we suppose that modality-shift costs are not due to a purely motor-related mechanisms but rather emerge from a general switching process. Consequently, the response modality has to be considered as a cognitive component in models of task switching

    Under pressure: Response urgency modulates striatal and insula activity during decision-making under risk

    Get PDF
    When deciding whether to bet in situations that involve potential monetary loss or gain (mixed gambles), a subjective sense of pressure can influence the evaluation of the expected utility associated with each choice option. Here, we explored how gambling decisions, their psychophysiological and neural counterparts are modulated by an induced sense of urgency to respond. Urgency influenced decision times and evoked heart rate responses, interacting with the expected value of each gamble. Using functional MRI, we observed that this interaction was associated with changes in the activity of the striatum, a critical region for both reward and choice selection, and within the insula, a region implicated as the substrate of affective feelings arising from interoceptive signals which influence motivational behavior. Our findings bridge current psychophysiological and neurobiological models of value representation and action-programming, identifying the striatum and insular cortex as the key substrates of decision-making under risk and urgency

    Recruitment of lateral rostral prefrontal cortex in spontaneous and task-related thoughts

    Get PDF
    Behavioural and neuroimaging studies suggest that spontaneous and task-related thought processes share common cognitive mechanisms and neural bases. Lateral rostral prefrontal cortex (RPFC) is a brain region that has been implicated both in spontaneous thought and in high-level cognitive control processes, such as goal/subgoal integration and the manipulation of self-generated thoughts. We therefore propose that the recruitment of lateral RPFC may follow a U-shaped function of cognitive demand: relatively high in low-demand situations conducive to the emergence of spontaneous thought, and in high-demand situations depending on processes supported by this brain region. We used functional magnetic resonance imaging to investigate brain activity while healthy participants performed two tasks, each with three levels of cognitive demands, in a block design. The frequency of task-unrelated thoughts, measured by questionnaire, was highest in the low cognitive demand condition. Low and high cognitive demand conditions were each compared to the intermediate level. Lateral RPFC and superior parietal cortex were recruited in both comparisons, with additional activations specific to each contrast. These results suggest that RPFC is involved both when (a) task demands are low, and the mind wanders, and (b) the task requires goal/subgoal integration and manipulation of self-generated thoughts

    BOLD Correlates of Trial-by-Trial Reaction Time Variability in Gray and White Matter: A Multi-Study fMRI Analysis

    Get PDF
    Reaction time (RT) is one of the most widely used measures of performance in experimental psychology, yet relatively few fMRI studies have included trial-by-trial differences in RT as a predictor variable in their analyses. Using a multi-study approach, we investigated whether there are brain regions that show a general relationship between trial-by-trial RT variability and activation across a range of cognitive tasks.The relation between trial-by-trial differences in RT and brain activation was modeled in five different fMRI datasets spanning a range of experimental tasks and stimulus modalities. Three main findings were identified. First, in a widely distributed set of gray and white matter regions, activation was delayed on trials with long RTs relative to short RTs, suggesting delayed initiation of underlying physiological processes. Second, in lateral and medial frontal regions, activation showed a "time-on-task" effect, increasing linearly as a function of RT. Finally, RT variability reliably modulated the BOLD signal not only in gray matter but also in diffuse regions of white matter.The results highlight the importance of modeling trial-by-trial RT in fMRI analyses and raise the possibility that RT variability may provide a powerful probe for investigating the previously elusive white matter BOLD signal
    corecore