135 research outputs found

    INTEGRATE II: randomised phase III controlled trials of regorafenib containing regimens versus standard of care in refractory Advanced Gastro-Oesophageal Cancer (AGOC): a study by the Australasian Gastro-Intestinal Trials Group (AGITG)

    Get PDF
    BACKGROUND: Advanced gastro-oesophageal cancer (AGOC) carries a poor prognosis. No standard of care treatment options are available after first and second-line therapies. Regorafenib is an oral multi-targeted tyrosine kinase inhibitor targeting angiogenic, stromal, and oncogenic receptor tyrosine kinases. Regorafenib 160 mg daily prolonged progression free survival compared to placebo (INTEGRATE, phase 2). Regorafenib 80 mg daily in combination with nivolumab 3 mg/kg showed promising objective response rates (REGONIVO). METHODS/DESIGN: INTEGRATE II (INTEGRATE IIa and IIb) platform comprises two international phase III randomised controlled trials (RCT) with 2:1 randomisation in favor of experimental intervention. INTEGRATE IIa (double-blind) compares regorafenib 160 mg daily on days 1 to 21 of each 28-day cycle to placebo. INTEGRATE IIb (open label) compares REGONIVO, regorafenib 90 mg days 1 to 21 in combination with intravenous nivolumab 240 mg days 1 and 15 each 28-day cycle with investigator's choice of chemotherapy (control). Treatment continues until disease progression or intolerable adverse events as per protocol. Eligible participants include adults with AGOC who have failed two or more lines of treatment. Stratification is by location of tumour (INTEGRATE IIa only), geographic region, prior VEGF inhibitor and prior immunotherapy use (INTEGRATE IIb only). Primary endpoint is overall survival. Secondary endpoints are progression free survival, objective response rate, quality of life, and safety. Tertiary/correlative objectives include biomarker and pharmacokinetic evaluation. DISCUSSION: INTEGRATE II provides a platform to evaluate the clinical utility of regorafenib alone, as well as regorafenib in combination with nivolumab in treatment of participants with refractory AGOC. TRIAL REGISTRATION: INTEGRATE IIa prospectively registered 1 April 2016 Australia New Zealand Clinical Trial Registry: ACTRN12616000420448 (ClinicalTrials.gov NCT02773524). INTEGRATE IIb prospectively registered 10 May 2021 ClinicalTrials.gov: NCT04879368.Lyn Ley Lam, Nick Pavlakis, Kohei Shitara, Katrin M. Sjoquist, Andrew J. Martin, Sonia Yip, Yoon, Koo Kang, Yung, Jue Bang, Li, Tzong Chen, Markus Moehler, Tanios Bekaii, Saab, Thierry Alcindor, Christopher J. O, Callaghan, Niall C. Tebbutt, Wendy Hague, Howard Chan, Sun Young Rha, Keun, Wook Lee, Val Gebski, Anthony Jaworski, John Zalcberg, Timothy Price, John Simes, and David Goldstei

    The management of hepatocellular carcinoma. Current expert opinion and recommendations derived from the 24th ESMO/World Congress on Gastrointestinal Cancer, Barcelona, 2022

    Get PDF
    This article summarises expert discussion on the management of patients with hepatocellular carcinoma (HCC), which took place during the 24th World Gastrointestinal Cancer Congress (WGICC) in Barcelona, July 2022. A multidisciplinary approach is mandatory to ensure an optimal diagnosis and staging of HCC, planning of curative and therapeutic options, including surgical, embolisation, ablative strategies, or systemic therapy. Furthermore, in many patients with HCC, underlying liver cirrhosis represents a challenge and influences the therapeutic options.Peer reviewe

    The management of hepatocellular carcinoma. Current expert opinion and recommendations derived from the 24th ESMO/World Congress on Gastrointestinal Cancer, Barcelona, 2022

    Get PDF
    This article summarises expert discussion on the management of patients with hepatocellular carcinoma (HCC), which took place during the 24th World Gastrointestinal Cancer Congress (WGICC) in Barcelona, July 2022. A multidisciplinary approach is mandatory to ensure an optimal diagnosis and staging of HCC, planning of curative and therapeutic options, including surgical, embolisation, ablative strategies, or systemic therapy. Furthermore, in many patients with HCC, underlying liver cirrhosis represents a challenge and influences the therapeutic options

    Lapatinib Induces Autophagy, Apoptosis and Megakaryocytic Differentiation in Chronic Myelogenous Leukemia K562 Cells

    Get PDF
    Lapatinib is an oral, small-molecule, dual tyrosine kinase inhibitor of epidermal growth factor receptors (EGFR, or ErbB/Her) in solid tumors. Little is known about the effect of lapatinib on leukemia. Using human chronic myelogenous leukemia (CML) K562 cells as an experimental model, we found that lapatinib simultaneously induced morphological changes resembling apoptosis, autophagy, and megakaryocytic differentiation. Lapatinib-induced apoptosis was accompanied by a decrease in mitochondrial transmembrane potential and was attenuated by the pancaspase inhibitor z-VAD-fmk, indicating a mitochondria-mediated and caspase-dependent pathway. Lapatinib-induced autophagic cell death was verified by LC3-II conversion, and upregulation of Beclin-1. Further, autophagy inhibitor 3-methyladenine as well as autophagy-related proteins Beclin-1 (ATG6), ATG7, and ATG5 shRNA knockdown rescued the cells from lapatinib-induced growth inhibition. A moderate number of lapatinib-treated K562 cells exhibited features of megakaryocytic differentiation. In summary, lapatinib inhibited viability and induced multiple cellular events including apoptosis, autophagic cell death, and megakaryocytic differentiation in human CML K562 cells. This distinct activity of lapatinib against CML cells suggests potential for lapatinib as a therapeutic agent for treatment of CML. Further validation of lapatinib activity in vivo is warranted

    Synergistic combination of cytotoxic chemotherapy and cyclin-dependent kinase 4/6 inhibitors in biliary tract cancers

    Get PDF
    Background and aims: Biliary tract cancers (BTCs) are uncommon, but highly lethal, gastrointestinal malignancies. Gemcitabine/cisplatin is a standard-of-care systemic therapy, but has a modest impact on survival and harbors toxicities, including myelosuppression, nephropathy, neuropathy, and ototoxicity. Whereas BTCs are characterized by aberrations activating the cyclinD1/cyclin-dependent kinase (CDK)4/6/CDK inhibitor 2a/retinoblastoma pathway, clinical use of CDK4/6 inhibitors as monotherapy is limited by lack of validated biomarkers, diffident preclinical efficacy, and development of acquired drug resistance. Emerging studies have explored therapeutic strategies to enhance the antitumor efficacy of CDK4/6 inhibitors by the combination with chemotherapy regimens, but their mechanism of action remains elusive.Approach and results: Here, we report in vitro and in vivo synergy in BTC models, showing enhanced efficacy, reduced toxicity, and better survival with a combination comprising gemcitabine/cisplatin and CDK4/6 inhibitors. Furthermore, we demonstrated that abemaciclib monotherapy had only modest efficacy attributable to autophagy-induced resistance. Notably, triplet therapy was able to potentiate efficacy through elimination of the autophagic flux. Correspondingly, abemaciclib potentiated ribonucleotide reductase catalytic subunit M1 reduction, resulting in sensitization to gemcitabine.Conclusions: As such, these data provide robust preclinical mechanistic evidence of synergy between gemcitabine/cisplatin and CDK4/6 inhibitors and delineate a path forward for translation of these findings to preliminary clinical studies in advanced BTC patients.</p

    HemaMax™, a Recombinant Human Interleukin-12, Is a Potent Mitigator of Acute Radiation Injury in Mice and Non-Human Primates

    Get PDF
    HemaMax, a recombinant human interleukin-12 (IL-12), is under development to address an unmet medical need for effective treatments against acute radiation syndrome due to radiological terrorism or accident when administered at least 24 hours after radiation exposure. This study investigated pharmacokinetics, pharmacodynamics, and efficacy of m-HemaMax (recombinant murine IL-12), and HemaMax to increase survival after total body irradiation (TBI) in mice and rhesus monkeys, respectively, with no supportive care. In mice, m-HemaMax at an optimal 20 ng/mouse dose significantly increased percent survival and survival time when administered 24 hours after TBI between 8–9 Gy (p<0.05 Pearson's chi-square test). This survival benefit was accompanied by increases in plasma interferon-γ (IFN-γ) and erythropoietin levels, recovery of femoral bone hematopoiesis characterized with the presence of IL-12 receptor β2 subunit–expressing myeloid progenitors, megakaryocytes, and osteoblasts. Mitigation of jejunal radiation damage was also examined. At allometrically equivalent doses, HemaMax showed similar pharmacokinetics in rhesus monkeys compared to m-HemaMax in mice, but more robustly increased plasma IFN-γ levels. HemaMax also increased plasma erythropoietin, IL-15, IL-18, and neopterin levels. At non-human primate doses pharmacologically equivalent to murine doses, HemaMax (100 ng/Kg and 250 ng/Kg) administered at 24 hours after TBI (6.7 Gy/LD50/30) significantly increased percent survival of HemaMax groups compared to vehicle (p<0.05 Pearson's chi-square test). This survival benefit was accompanied by a significantly higher leukocyte (neutrophils and lymphocytes), thrombocyte, and reticulocyte counts during nadir (days 12–14) and significantly less weight loss at day 12 compared to vehicle. These findings indicate successful interspecies dose conversion and provide proof of concept that HemaMax increases survival in irradiated rhesus monkeys by promoting hematopoiesis and recovery of immune functions and possibly gastrointestinal functions, likely through a network of interactions involving dendritic cells, osteoblasts, and soluble factors such as IL-12, IFN-γ, and cytoprotectant erythropoietin

    HER-2/neu gene amplification in esophageal adenocarcinoma and its influence on survival

    Get PDF
    The original publication is available at the Annals website at www.springerlink.com/content/1534-4681.Background: HER-2/neu (c-erbB-2, HER2) gene amplification and protein overexpression have been associated with poor prognosis in several solid tumors, including breast and gastric cancer. Its incidence and significance in esophageal adenocarcinoma is unknown. Materials and Methods: Tissue microarrays were successfully constructed from 89 paraffin-embedded archival specimens of esophageal adenocarcinomas for HER2 gene amplification by silver-enhanced in situ hybridization (SISH). No patients had undergone neoadjuvant therapy. Protein overexpression was tested with immunohistochemistry (IHC) using automated immunostaining (Ventana Benchmark). Incidence of HER2 positivity, correlation to clinicopathological variables in esophageal cancer patients, and concordance between SISH and IHC were determined. Results: True HER2 gene amplification was detected in 14 esophageal cancer specimens (16%), and 92% of those with high-level HER2 amplification showed positive HER2 protein overexpression. No significant associations were found among gene amplification and clinicopathological factors. The 5-year survival rates were 57% for esophageal cancer patients with HER2 amplification compared with 32% without, but the difference in overall survival was not significant (P = .37). The correlation between SISH and IHC was statistically significant (P < .0001). Conclusion: While molecular targeting may be possible for approximately 16% of esophageal adenocarcinoma patients, HER2 oncogene amplification did not influence survival in this study.Sarah K. Thompson, Thomas R. Sullivan, Ruth Davies and Andrew R. Ruszkiewic

    A multiscale systems perspective on cancer, immunotherapy, and Interleukin-12

    Get PDF
    Monoclonal antibodies represent some of the most promising molecular targeted immunotherapies. However, understanding mechanisms by which tumors evade elimination by the immune system of the host presents a significant challenge for developing effective cancer immunotherapies. The interaction of cancer cells with the host is a complex process that is distributed across a variety of time and length scales. The time scales range from the dynamics of protein refolding (i.e., microseconds) to the dynamics of disease progression (i.e., years). The length scales span the farthest reaches of the human body (i.e., meters) down to the range of molecular interactions (i.e., nanometers). Limited ranges of time and length scales are used experimentally to observe and quantify changes in physiology due to cancer. Translating knowledge obtained from the limited scales observed experimentally to predict patient response is an essential prerequisite for the rational design of cancer immunotherapies that improve clinical outcomes. In studying multiscale systems, engineers use systems analysis and design to identify important components in a complex system and to test conceptual understanding of the integrated system behavior using simulation. The objective of this review is to summarize interactions between the tumor and cell-mediated immunity from a multiscale perspective. Interleukin-12 and its role in coordinating antibody-dependent cell-mediated cytotoxicity is used illustrate the different time and length scale that underpin cancer immunoediting. An underlying theme in this review is the potential role that simulation can play in translating knowledge across scales
    corecore