1,608 research outputs found

    Anomalies in Universal Intensity Scaling in Ultrarelativistic Laser-Plasma Interactions

    Full text link
    Laser light incident on targets at intensities such that the electron dynamics is ultrarelativistic gives rise to a harmonic power spectrum extending to high orders and characterized by a relatively slow decay with the harmonic number m that follows a power law dependence, m^{-p}. Relativistic similarity theory predicts a universal value for p = 8/3 up to some cut-off m = m*. The results presented in this work suggest that under conditions in which plasma effects contribute to the emission spectrum, the extent of this contribution may invalidate the concept of universal decay. We report a decay with harmonic number in the ultrarelativistic range characterised by an index 5/3 < p < 7/3, significantly weaker than that predicted by the similarity model.Comment: 5 pages, 4 figure

    Solvable Leibniz algebras with triangular nilradical

    Full text link
    A classification exists for Lie algebras whose nilradical is the triangular Lie algebra T(n)T(n). We extend this result to a classification of all solvable Leibniz algebras with nilradical T(n)T(n). As an example we show the complete classification of all Leibniz algebras whose nilradical is T(4)T(4).Comment: arXiv admin note: text overlap with arXiv:1307.844

    CO082. TRATAMENTO COM IODO NO HIPERTIROIDISMO DO IDOSO – CASUÍSTICA

    Get PDF

    Tuning crystal ordering, electronic structure, and morphology in organic semiconductors: Tetrathiafulvalenes as a model case

    Get PDF
    Tetrathiafulvalenes (TTFs) are an appealing class of organic small molecules giving rise to some of the highest performing active materials reported for organic field effect transistors (OFETs). Because they can be easily chemically modified, TTF-derivatives are ideal candidates to perform molecule-property correlation studies and, especially, to elucidate the impact of molecular and crystal engineering on device performance. A brief introduction into the state-of-the-art of the field-effect mobility values achieved with TTF derivatives employing different fabrication techniques is provided. Following, structure-performance relationships are discussed, including polymorphism, a phenomenon which is crucial to control for ensuring device reproducibility. It is also shown that chemical modification of TTFs has a strong influence on the electronic structure of these materials, affecting their stability as well as the nature of the generated charge carriers, leading to devices with p-channel, n-channel, or even ambipolar behaviour. TTFs have also shown promise in other applications, such as phototransistors, sensors, or as dopants or components of organic metal charge transfer salts used as source-drain contacts. Overall, TTFs are appealing building blocks in organic electronics, not only because they can be tailored to perform fundamental studies, but also because they offer a wide spectrum of potential applications. Tetrathiafulvalenes are promising active materials in organic field-effect transistors (OFETs), in which they exhibit high performances. An overview is provided of the use of this family of materials as a model building block for OFETs to highlight general concepts of organic semiconductors and their use in devices.The authors thank the ERC StG 2012-306826 e-GAMES project, the Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), the DGI (Spain) with projects BE-WELL CTQ2013-40480-R and MAT2012-30924, and the Generalitat de Catalunya (2014-SGR-17, 2014SGR97 and XRQTC).Peer Reviewe

    Exchange coupling inversion in a high-spin organic triradical molecule

    Get PDF
    The magnetic properties of a nanoscale system are inextricably linked to its local environment. In ad-atoms on surfaces and inorganic layered structures the exchange interactions result from the relative lattice positions, layer thicknesses and other environmental parameters. Here, we report on a sample-dependent sign inversion of the magnetic exchange coupling between the three unpaired spins of an organic triradical molecule embedded in a three-terminal device. This ferro-to-antiferromagnetic transition is due to structural distortions and results in a high-to-low spin ground state change in a molecule traditionally considered to be a robust high-spin quartet. Moreover, the flexibility of the molecule yields an in-situ electric tunability of the exchange coupling via the gate electrode. These findings open a route to the controlled reversal of the magnetic states in organic molecule-based nanodevices by mechanical means, electrical gating or chemical tailoring

    Multi-Orbital Molecular Compound (TTM-TTP)I_3: Effective Model and Fragment Decomposition

    Full text link
    The electronic structure of the molecular compound (TTM-TTP)I_3, which exhibits a peculiar intra-molecular charge ordering, has been studied using multi-configuration ab initio calculations. First we derive an effective Hubbard-type model based on the molecular orbitals (MOs) of TTM-TTP; we set up a two-orbital Hamiltonian for the two MOs near the Fermi energy and determine its full parameters: the transfer integrals, the Coulomb and exchange interactions. The tight-binding band structure obtained from these transfer integrals is consistent with the result of the direct band calculation based on density functional theory. Then, by decomposing the frontier MOs into two parts, i.e., fragments, we find that the stacked TTM-TTP molecules can be described by a two-leg ladder model, while the inter-fragment Coulomb energies are scaled to the inverse of their distances. This result indicates that the fragment picture that we proposed earlier [M.-L. Bonnet et al.: J. Chem. Phys. 132 (2010) 214705] successfully describes the low-energy properties of this compound.Comment: 5 pages, 4 figures, published versio
    corecore