1,054 research outputs found

    Origin and stability of the dipolar response in a family of tetragonal tungsten bronze relaxors

    Full text link
    A new family of relaxor dielectrics with the tetragonal tungsten bronze structure (nominal composition Ba6M3+Nb9O30, M3+ = Ga, Sc or In) were studied using dielectric spectroscopy to probe the dynamic dipole response and correlate this with the crystal structure as determined from powder neutron diffraction. Independent analyses of real and imaginary parts of the complex dielectric function were used to determine characteristic temperature parameters, TVF, and TUDR, respectively. In each composition both these temperatures correlated with the temperature of maximum crystallographic strain, Tc/a determined from diffraction data. The overall behaviour is consistent with dipole freezing and the data indicate that the dipole stability increases with increasing M3+ cation size as a result of increased tetragonality of the unit cell. Crystallographic data suggests that these materials are uniaxial relaxors with the dipole moment predominantly restricted to the B1 cation site in the structure. Possible origins of the relaxor behaviour are discussed.Comment: Main article 32 pages, 8 figures; Supplementary data 24 pages, 4 figure

    Temperature dependence of piezoelectric properties of high- TC Bi (Mg1/2Ti1/2) O3 - PbTiO3

    Get PDF
    The temperature dependence of both polarization and electric-field induced strain was investigated for (1-x)Bi(Mg1/2Ti1/2)O-3-xPbTiO(3) (x=0.36, 0.37, and 0.38), with the morphotropic phase boundary located at x=0.37. Remanent polarization (P-r) and maximum polarization (P-max) of all compositions are enhanced with increasing temperature up to 175 degrees C, which is rationalized as improved domain switching due to reduced tetragonality (c/a). The hysteresis during unipolar electric cycling tends to decrease with increase in the fraction of tetragonal phase. Temperature dependent x-ray diffraction demonstrates that switched non-180 degrees domains are stable against thermal depoling above 200 degrees C, which indicates that the currently investigated materials are suitable for high temperature applications. This promising high-T-C piezoelectric is further discussed with reference to oxygen octahedron of the tilted R3c and untilted R3m space groups and the tolerance factor (t).open371

    Domain switching energies: Mechanical versus electrical loading in La-doped bismuth ferrite-lead titanate

    Get PDF
    The mechanical stress-induced domain switching and energy dissipation in morphotropic phase boundary (1 - x)(Bi(1-y)La(y))FeO(3)-xPbTiO(3) during uniaxial compressive loading have been investigated at three different temperatures. The strain obtained was found to decrease with increasing lanthanum content, although a sharp increase in strain was observed for compositions doped with 7.5 and 10 at. % La. Increased domain switching was found in compositions with decreased tetragonality. This is discussed in terms of the competing influences of the amount of domain switching and the spontaneous strain on the macroscopic behavior under external fields. Comparison of the mechanically and electrically dissipated energy showed significant differences, discussed in terms of the different microscopic interactions of electric field and stress.open10

    Dielectric nonlinearity of relaxor ferroelectric ceramics at low ac drives

    Full text link
    Dielectric nonlinear response of (PbMg1/3_{1/3}Nb2/3_{2/3}O3_3)0.9_{0.9}(PbTiO3_3)0.1_{0.1} (0.9PMN-0.1PT) relaxor ceramics was investigated under different ac drive voltages. It was observed that: (i) the dielectric permittivity is independent on ac field amplitude at high temperatures; (ii) with increasing ac drive, the permittivity maximum increases, and the temperature of the maximum shifts to lower temperature; (iii) the nonlinear effect is weakened when the measurement frequency increases. The influences of increasing ac drive were found to be similar to that of decreasing frequency. It is believed that the dielectric nonlinearities of relaxors at low drives can be explained by the phase transition theory of ergodic space shrinking in succession. A Monte Carlo simulation was performed on the flips of micro polarizations at low ac drives to verify the theory.Comment: Submitted to J. Phys.: Cond. Matte

    Monoclinic phase in the relaxor-based piezo-/ ferroelectric Pb(Mg1/3_{1/3}Nb2/3)O3_{2/3})O_3-PbTiO3_3 system

    Get PDF
    A ferroelectric monoclinic phase of space group CmCm (MAM_A type) has been discovered in 0.65Pb(Mg1/3_{1/3}Nb2/3)O3_{2/3})O_3-0.35PbTiO3_3 by means of high resolution synchrotron X-ray diffraction. It appears at room temperature in a single crystal previously poled under an electric field of 43 kV/cm applied along the pseudocubic [001] direction, in the region of the phase diagram around the morphotropic phase boundary between the rhombohedral (R3m) and the tetragonal (P4mm) phases. The monoclinic phase has lattice parameters a = 5.692 A, b = 5.679 A, c = 4.050 A and β\beta = 90.1590.15^{\circ}, with the bm_m-axis oriented along the pseudo-cubic [110] direction . It is similar to the monoclinic phase observed in PbZr1x_{1-x}Tix_xO3_3, but different from that recently found in Pb(Zn1/3_{1/3}Nb2/3)O3_{2/3})O_3-PbTiO3_3, which is of space group PmPm (MCM_C type).Comment: Revised version after referees' comments. PDF file. 6 pages, 4 figures embedde

    CVM studies on the atomic ordering in complex perovskite alloys

    Full text link
    The atomic ordering in complex perovskite alloys is investigated by the cluster variation method (CVM). For the 1/3\{111\}-type ordered structure, the order-disorder phase transition is the first order, and the order parameter of the 1:2 complex perovskite reaches its maximum near x=0.25. For the 1/2\{111\}-type ordered structure, the ordering transition is the second order. Phase diagrams for both ordered structures are obtained. The order-disorder line obeys the linear law.Comment: 10 pages, 6 figure

    An Investigation Demonstrating the Feasibility of Microwave Sintering of Base-Metal-Electrode Multilayer Capacitors

    Get PDF
    Abstract. A microwave sintering technique has been developed for base-metal electrode (BME) multilayer ceramic capacitors (MLCCs). Commercial green chips of size 0603 MLC with nickel electrodes were sintered in a microwave field. With a specially designed susceptor/insulation package to optimize coupling and uniformity of heating, a number of sintering experiments were conducted in the temperature range of 1200 to 1250 • C in a multimode microwave cavity operating at 2.45 GHz under a partially reducing atmosphere. Microstructure of the microwave processed MLCCs was investigated with both SEM and TEM techniques. The dielectric properties of the microwave sintered MLCCs were measured and compared with those sintered using conventional process at 1320 • C and lower pO 2 's ≈ 10 −9 atms. The results demonstrate that nickel electrodes remain metallic after microwave sintering even though the pO 2 's were relatively high and would thermodynamically favor NiO. The microwave sintered samples showed a dense, fine and uniform microstructure. The properties of the microwavesintered samples were comparable to the conventionally sintered samples. The microwave processing was found to have enhanced sintering kinetics of the BME MLCCs, lowering sintering temperature by about 100 • C and also the processing time by about 90%

    Development of Ferroelectric Order in Relaxor (1-x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3

    Full text link
    The microstructure and phase transition in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 (PMN) and its solid solution with PbTiO3 (PT), PMN-xPT, remain to be one of the most puzzling issues of solid state science. In the present work we have investigated the evolution of the phase symmetry in PMN-xPT ceramics as a function of temperature (20 K < T < 500 K) and composition (0 <= x <= 0.15) by means of high-resolution synchrotron x-ray diffraction. Structural analysis based on the experimental data reveals that the substitution of Ti^4+ for the complex B-site (Mg1/3Nb2/3)^4+ ions results in the development of a clean rhombohedral phase at a PT-concentration as low as 5%. The results provide some new insight into the development of the ferroelectric order in PMN-PT, which has been discussed in light of the kinetics of polar nanoregions and the physical models of the relaxor ferroelectrics to illustrate the structural evolution from a relaxor to a ferroelectric state.Comment: Revised version with updated references; 9 pages, 4 figures embedde

    3D Variation in delineation of head and neck organs at risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Consistent delineation of patient anatomy becomes increasingly important with the growing use of highly conformal and adaptive radiotherapy techniques. This study investigates the magnitude and 3D localization of interobserver variability of organs at risk (OARs) in the head and neck area with application of delineation guidelines, to establish measures to reduce current redundant variability in delineation practice.</p> <p>Methods</p> <p>Interobserver variability among five experienced radiation oncologists was studied in a set of 12 head and neck patient CT scans for the spinal cord, parotid and submandibular glands, thyroid cartilage, and glottic larynx. For all OARs, three endpoints were calculated: the Intraclass Correlation Coefficient (ICC), the Concordance Index (CI) and a 3D measure of variation (3D SD).</p> <p>Results</p> <p>All endpoints showed largest interobserver variability for the glottic larynx (ICC = 0.27, mean CI = 0.37 and 3D SD = 3.9 mm). Better agreement in delineations was observed for the other OARs (range, ICC = 0.32-0.83, mean CI = 0.64-0.71 and 3D SD = 0.9-2.6 mm). Cranial, caudal, and medial regions of the OARs showed largest variations. All endpoints provided support for improvement of delineation practice.</p> <p>Conclusions</p> <p>Variation in delineation is traced to several regional causes. Measures to reduce this variation can be: (1) guideline development, (2) joint delineation review sessions and (3) application of multimodality imaging. Improvement of delineation practice is needed to standardize patient treatments.</p

    Phase diagram of the ferroelectric-relaxor (1-x)PbMg(1/3)Nb(2/3)O3-xPbTiO3

    Get PDF
    Synchrotron x-ray powder diffraction measurements have been performed on unpoled ceramic samples of (1-x)PbMg(1/3)Nb(2/3)O3-xPbTiO3 (PMN-xPT) with 30%<= x<= 39% as a function of temperature around the morphotropic phase boundary (MPB), which is the line separating the rhombohedral and tetragonal phases in the phase diagram. The experiments have revealed very interesting features previously unknown in this or related systems. The sharp and well-defined diffraction profiles observed at high and intermediate temperatures in the cubic and tetragonal phases, respectively, are in contrast to the broad features encountered at low temperatures. These peculiar characteristics, which are associated with the monoclinic phase of MC-type previously reported by Kiat et al and Singh et al., can only be interpreted as multiple coexisting structures with MC as the major component. An analysis of the diffraction profiles has allowed us to properly characterize the PMN-xPT phase diagram and to determine the stability region of the monoclinic phase, which extends from x= 31% to x= 37% at 20 K. The complex lansdcape of observed phases points to an energy balance between the different PMN-xPT phases which is intrinsically much more delicate than that of related systems such as PbZr(1-x)TixO3 or (1-x)PbZn(1/3)Nb(1/3)O3-xPbTiO3. These observations are in good accord with an optical study of x= 33% by Xu et al., who observed monoclinic domains with several different polar directions coexisting with rhombohedral domains, in the same single crystal.Comment: REVTeX4, 11 pages, 10 figures embedde
    corecore