5,540 research outputs found

    Limit structure of Future Null Infinity tangent -topology of the event horizon and gravitational wave tail-

    Full text link
    We investigated the relation between the behavior of gravitational wave at late time and the limit structure of future null infinity tangent which will determine the topology of the event horizon far in the future. In the present article, we mainly consider a spacetime with two black holes. Although in most of cases, the black holes coalesce and its event horizon is topologically a single sphere far in the future, there are several possibilities that the black holes never coalesce and such exact solutions as examples. In our formulation, the tangent vector of future null infinity is, under conformal embedding, related to the number of black holes far in the future through the Poincar\'e-Hopf's theorem. Under the conformal embedding, the topology of event horizon far in the future will be affected by the geometrical structure of the future null infinity. In this article, we related the behavior of Weyl curvature to this limit behavior of the generator vector of the future null infinity. We show if Weyl curvature decays sufficiently slowly at late time in the neighborhood of future null infinity, two black holes never coalesce.Comment: 20 pages, 3 figures, accepted for publication in Class. Quant. Gra

    Molecular-beam epitaxy of CrSi_2 on Si(111)

    Get PDF
    Chromium disilicide layers have been grown on Si(111) in a commercial molecular‐beam epitaxy machine. Thin layers (10 nm) exhibit two epitaxial relationships, which have been identified as CrSi_2(0001)//Si(111) with CrSi_2[1010]//Si[101], and CrSi_2(0001)//Si(111) with CrSi_2[1120]//Si[101]. The latter case represents a 30° rotation of the CrSi_2 layer about the Si surface normal relative to the former case. Thick (210 nm) layers were grown by four different techniques, and the best‐quality layer was obtained by codeposition of Cr and Si at an elevated temperature. These layers are not single crystal; the largest grains are observed in a layer grown at 825 °C and are 1–2 ÎŒm across

    One dimensional Si-in-Si(001) template for single-atom wire growth

    Full text link
    Single atom metallic wires of arbitrary length are of immense technological and scientific interest. We describe a novel silicon-only template enabling the self-organised growth of isolated micrometer long surface and subsurface single-atom chains. It consists of a one dimensional, defect-free reconstruction - the Haiku core, here revealed for the first time in details - self-assembled on hydrogenated Si(001) terraces, independent of any step edges. We discuss the potential of this Si-in-Si template as an appealing alternative to vicinal surfaces for nanoscale patterning.Comment: 3 pages, 2 figure

    Large-scale radio continuum properties of 19 Virgo cluster galaxies The influence of tidal interactions, ram pressure stripping, and accreting gas envelopes

    Get PDF
    Deep scaled array VLA 20 and 6cm observations including polarization of 19 Virgo spirals are presented. This sample contains 6 galaxies with a global minimum of 20cm polarized emission at the receding side of the galactic disk and quadrupolar type large-scale magnetic fields. In the new sample no additional case of a ram-pressure stripped spiral galaxy with an asymmetric ridge of polarized radio continuum emission was found. In the absence of a close companion, a truncated HI disk, together with a ridge of polarized radio continuum emission at the outer edge of the HI disk, is a signpost of ram pressure stripping. 6 out of the 19 observed galaxies display asymmetric 6cm polarized emission distributions. Three galaxies belong to tidally interacting pairs, two galaxies host huge accreting HI envelopes, and one galaxy had a recent minor merger. Tidal interactions and accreting gas envelopes can lead to compression and shear motions which enhance the polarized radio continuum emission. In addition, galaxies with low average star formation rate per unit area have a low average degree of polarization. Shear or compression motions can enhance the degree of polarization. The average degree of polarization of tidally interacting galaxies is generally lower than expected for a given rotation velocity and star formation activity. This low average degree of polarization is at least partly due to the absence of polarized emission from the thin disk. Ram pressure stripping can decrease whereas tidal interactions most frequently decreases the average degree of polarization of Virgo spiral galaxies. We found that moderate active ram pressure stripping has no influence on the spectral index, but enhances the global radio continuum emission with respect to the FIR emission, while an accreting gas envelope can but not necessarily enhances the radio continuum emission with respect to the FIR emission.Comment: 37 pages, 26 figures, accepted for publication in A&

    Stable gravastars with generalised exteriors

    Full text link
    New spherically symmetric gravastar solutions, stable to radial perturbations, are found by utilising the construction of Visser and Wiltshire. The solutions possess an anti--de Sitter or de Sitter interior and a Schwarzschild--(anti)--de Sitter or Reissner--Nordstr\"{o}m exterior. We find a wide range of parameters which allow stable gravastar solutions, and present the different qualitative behaviours of the equation of state for these parameters.Comment: 14 pages, 11 figures, to appear in Classical and Quantum Gravit

    How Common is Energetic ^3He in the Inner Heliosphere?

    Get PDF
    Using data from the SIS and ULEIS instruments on the Advanced Composition Explorer (ACE) we have identified periods during which energetic ^3He is present in near-Earth interplanetary space between November 1997 and May 2002. The data, which cover the energy intervals 0.2–1 MeV/nuc (ULEIS) and 4.5–16.3 MeV/nuc (SIS), show that ^3He is present a significant fraction of the time, as would be required if these suprathermal particles were the major source of the ^3He being accelerated by shocks in the interplanetary medium. Specifically, we find that energetic ^3He is present at least ~ 60% of the time, and perhaps significantly more often

    How the Charge Can Affect the Formation of Gravastars

    Full text link
    In recent work we physically interpreted a special gravastar solution characterized by a zero Schwarzschild mass. In fact, in that case, none gravastar was formed and the shell expanded, leaving behind a de Sitter or a Minkowski spacetime, or collapsed without forming an event horizon, originating what we called a massive non-gravitational object. This object has two components of non zero mass but the exterior spacetime is Minkowski or de Sitter. One of the component is a massive thin shell and the other one is de Sitter spacetime inside. The total mass of this object is zero Schwarzschild mass, which characterizes an exterior vacuum spacetime. Here, we extend this study to the case where we have a charged shell. Now, the exterior is a Reissner-Nordstr\"om spacetime and, depending on the parameter ω=1−γ\omega=1-\gamma of the equation of state of the shell, and the charge, a gravastar structure can be formed. We have found that the presence of the charge contributes to the stability of the gravastar, if the charge is greater than a critical value. Otherwise, a massive non-gravitational object is formed for small charges.Comment: 17 pages and 7 figures, several typos corrected, accepted for publication in JCA
    • 

    corecore