700 research outputs found

    The use of meteorological analogues to account for LAM QPF uncertainty

    No full text
    International audienceFlood predictions issued employing quantitative precipitation forecasts (QPFs) provided by deterministic models do not account for the uncertainty in the outcomes. A probabilistic approach to QPF seems to be indispensable to obtain different future flow scenarios that allow to manage the flood accounting for the variability of phenomena and the uncertainty associated with an hydrological forecast. A new approach based on a search for past situations (analogues), similar to previous and current day in terms of different meteorological fields over Western Europe and East Atlantic, has been developed to determine an ensemble of hourly quantitative precipitation forecasts for the Reno river basin, a medium-sized catchment in northern Italy. A statistical analysis, performed over an hydro-meteorological archive collecting ECMWF analyses at 12:00 UTC relative to the autumn seasons ranging from 1990 to 2000 and the corresponding precipitation measurements recorded by the raingauges spread over the catchment of interest, has underlined that the combination of geopotential at 500 hPa and vertical velocity at 700 hPa provides a better estimation of precipitation. The analogue-based ensemble prediction has to be considered not alternative but complementary with the deterministic QPF provided by a numerical model, even in view of a joint employment to improve real-time flood forecasting. In the present study, the analogue-based QPFs and the precipitation forecast provided by the Limited Area Model LAMBO have been used as different input to the distributed rainfall-runoff model TOPKAPI, thus generating, respectively, an ensemble of discharge forecasts, which provides a confidence interval for the predicted streamflow, and a deterministic discharge forecast taken as an error affected "measurement'' of the future flow, which does not convey any quantification of the forecast uncertainty. To make more informative the hydrological prediction, the ensemble spread could be regarded as a measure of the uncertainty of the deterministic forecast

    High resolution forecast of heavy precipitation with Lokal Modell: analysis of two case studies in the Alpine area

    Get PDF
    Northern Italy is frequently affected by severe precipitation conditions often inducing flood events with associated loss of properties, damages and casualties. The capability of correctly forecast these events, strongly required for an efficient support to civil protection actions, is still nowadays a challenge. This difficulty is also related with the complex structure of the precipitation field in the Alpine area and, more generally, over the Italian territory. Recently a new generation of non-hydrostatic meteorological models, suitable to be used at very high spatial resolution, has been developed. <P style='line-height: 20px;'> In this paper the performance of the non-hydrostatic Lokal Modell developed by the COSMO Consortium, is analysed with regard to a couple of intense precipitation events occurred in the Piemonte region in Northern Italy. These events were selected among the reference cases of the Hydroptimet/INTERREG IIIB project. <P style='line-height: 20px;'> LM run at the operational resolution of 7km provides a good forecast of the general rain structure, with an unsatisfactory representation of the precipitation distribution across the mountain ranges. It is shown that the inclusion of the new prognostic equations for cloud ice, rain and snow produces a remarkable improvement, reducing the precipitation in the upwind side and extending the intense rainfall area to the downwind side. The unrealistic maxima are decreased towards observed values. The use of very high horizontal resolution (2.8 km) improves the general shape of the precipitation field in the flat area of the Piemonte region but, keeping active the moist convection scheme, sparse and more intense rainfall peaks are produced. When convective precipitation is not parametrised but explicitly represented by the model, this negative effect is removed

    The use of meteorological analogues to account for LAM QPF uncertainty

    No full text
    International audienceFlood predictions based on quantitative precipitation forecasts (QPFs) provided by deterministic models do not account for the uncertainty in the outcomes. A probabilistic approach to QPF, one which accounts for the variability of phenomena and the uncertainty associated with a hydrological forecast, seems to be indispensable to obtain different future flow scenarios for improved flood management. A new approach based on a search for analogues, that is past situations similar to the current one under investigation in terms of different meteorological fields over Western Europe and East Atlantic, has been developed to determine an ensemble of hourly quantitative precipitation forecasts for the Reno river basin, a medium-sized catchment in northern Italy. A statistical analysis, performed over a hydro-meteorological archive of ECMWF analyses at 12:00 UTC relative to the autumn seasons ranging from 1990 to 2000 and the corresponding precipitation measurements recorded by the raingauges spread over the catchment of interest, has underlined that the combination of geopotential at 500 hPa and vertical velocity at 700 hPa provides a better estimation of precipitation. The analogue-based ensemble prediction has to be considered not alternative but complementary to the deterministic QPF provided by a numerical model, even when employed jointly to improve real-time flood forecasting. In the present study, the analogue-based QPFs and the precipitation forecast provided by the Limited Area Model LAMBO have been used as different input to the distributed rainfall-runoff model TOPKAPI, thus generating, respectively, an ensemble of discharge forecasts, which provides a confidence interval for the predicted streamflow, and a deterministic discharge forecast taken as an error-affected "measurement" of the future flow, which does not convey any quantification of the forecast uncertainty. To make more informative the hydrological prediction, the ensemble spread could be regarded as a measure of the uncertainty of the deterministic forecast

    Performance of the ARPA-SMR limited-area ensemble prediction system: two flood cases

    Get PDF
    The performance of the ARPA-SMR Limited-area Ensemble Prediction System (LEPS), generated by nesting a limited-area model on selected members of the ECMWF targeted ensemble, is evaluated for two flood events that occurred during September 1992. The predictability of the events is studied for forecast times ranging from 2 to 4 days. The extent to which floods localised in time and space can be forecast at high resolution in probabilistic terms was investigated. Rainfall probability maps generated by both LEPS and ECMWF targeted ensembles are compared for different precipitation thresholds in order to assess the impact of enhanced resolution. At all considered forecast ranges, LEPS performs better, providing a more accurate description of the event with respect to the spatio-temporal location, as well as its intensity. In both flood cases, LEPS probability maps turn out to be a very valuable tool to assist forecasters to issue flood alerts at different forecast ranges. It is also shown that at the shortest forecast range, the deterministic prediction provided by the limited area model, when run in a higher-resolution configuration, provides a very accurate rainfall pattern and a good quantitative estimate of the total rainfall deployed in the flooded regions

    The Soverato flood in Southern Italy: performance of global and limited-area ensemble forecasts

    Get PDF
    The predictability of the flood event affecting Soverato (Southern Italy) in September 2000 is investigated by considering three different configurations of ECMWF ensemble: the operational Ensemble Prediction System (EPS), the targeted EPS and a high-resolution version of EPS. For each configuration, three successive runs of ECMWF ensemble with the same verification time are grouped together so as to generate a highly-populated &quot;super-ensemble&quot;. Then, five members are selected from the super-ensemble and used to provide initial and boundary conditions for the integrations with a limited-area model, whose runs generate a Limited-area Ensemble Prediction System (LEPS). The relative impact of targeting the initial perturbations against increasing the horizontal resolution is assessed for the global ensembles as well as for the properties transferred to LEPS integrations, the attention being focussed on the probabilistic prediction of rainfall over a localised area. At the 108, 84 and 60- hour forecast ranges, the overall performance of the global ensembles is not particularly accurate and the best results are obtained by the high-resolution version of EPS. The LEPS performance is very satisfactory in all configurations and the rainfall maps show probability peaks in the correct regions. LEPS products would have been of great assistance to issue flood risk alerts on the basis of limited-area ensemble forecasts. For the 60-hour forecast range, the sensitivity of the results to the LEPS ensemble size is discussed by comparing a 5-member against a 51-member LEPS, where the limited-area model is nested on all EPS members. Little sensitivity is found as concerns the detection of the regions most likely affected by heavy precipitation, the probability peaks being approximately the same in both configurations

    Effect of kinetic resonances on the stability of Resistive Wall Mode in Reversed Field Pinch

    Get PDF
    The kinetic effects, due to the mode resonance with thermal particle drift motions in the reversed field pinch (RFP) plasmas, are numerically investigated for the stability of the resistive wall mode, using a non-perturbative MHD-kinetic hybrid formulation. The kinetic effects are generally found too weak to substantially change the mode growth rate, or the stability margin, re-enforcing the fact that the ideal MHD model is rather adequate for describing the RWM physics in RFP experiments.Comment: Submitted to: Plasma Phys. Control. Fusio

    Provision of boundary conditions for a convection-permitting ensemble: comparison of two different approaches

    Get PDF
    The current resolution of the operational global models favours the possibility of driving convection-permitting limited-area model (LAM) simulations directly, sparing the necessity for an intermediate step with a coarser-resolution LAM. Though the resolution of global ensemble systems is generally lower than that of deterministic ones, it is also possible to consider this opportunity in the field of ensemble forecasting. The aim of this paper is to investigate the effect of this choice for driving a convection-permitting ensemble based on the COSMO model, for a specific application, namely the forecast of intense autumn precipitation events over Italy. The impact of the direct nesting in the ECMWF global ensemble is compared to a two-step nesting, which makes use of a LAM ensemble system with parametrised convection. Results show that the variability introduced in the geopotential field by the direct nesting is usually contained within the uncertainty described by the standard ensemble, and differences between pairs of members following different nesting approaches are generally smaller than the ensemble error, computed with respect to analysis. The relation between spread and error is even improved by the direct nesting approach. In terms of precipitation, it is found that the forecasts issued by members with different nesting approaches generally have differences at spatial scales between 16 and 180 km, depending on the case, hence not negligible. Nevertheless, the skill of the LAM ensemble precipitation forecasts, evaluated by means of an objective verification, is comparable. Therefore, the overall quality of the 2.8 km ensemble for the specific application is not deteriorated by the provision of lower resolution lateral boundary conditions directly from the global ensemble

    Downscaling With an Unstructured Coastal-Ocean Model to the Goro Lagoon and the Po River Delta Branches

    Get PDF
    The Goro Lagoon Finite Element Model (GOLFEM) presented in this paper concentrates on the high-resolution downscaled model of the Goro Lagoon, along with five Po river branches and the coastal area of the Po delta in the northern Adriatic Sea (Italy) where crucial socio-economic activities take place. GOLFEM was validated by means of validation scores (bias – BIAS, root mean square error – RMSE, and mean absolute error – MAE) for the water level, current velocity, salinity and temperature measured at several fixed stations in the lagoon. The range of scores at the stations are: for temperature between −0.8 to +1.2°C, for salinity from −0.2 to 5 PSU, for sea level 0.1 m. The lagoon is dominated by an estuarine vertical circulation due to a double opening at the lagoon mouth and sustained by multiple sources of freshwater inputs. The non-linear interactions among the tidal forcing, the wind and the freshwater inputs affect the lagoon circulation at both seasonal and daily time scales. The sensitivity of the circulation to the forcings was analyzed with several sensitivity experiments done with the exclusion of the tidal forcing and different configurations of the river connections. GOLFEM was designed to resolve the lagoon dynamics at high resolution in order to evaluate the potential effects on the clam farming of two proposed scenarios of human intervention on the morphology of the connection with the sea. We calculated the changes of the lagoon current speed and salinity, and using opportune fitness indexes related to the clams physiology, we quantified analytically the effects of the interventions in terms of extension and persistence of areas of the clams optimal growth. The results demonstrate that the correct management of this kind of fragile environment relies on both long-term (intervention scenarios) and short-term (coastal flooding forecasts and potential anoxic conditions) modeling, based on a flexible tool that is able to consider all the recorded human interventions on the river connections. This study also demonstrates the importance of designing a seamless chain of models that are capable of integrating local effects into the coarser operational oceanographic models

    Data assimilation of radar reflectivity volumes in a LETKF scheme

    Get PDF
    Quantitative precipitation forecast (QPF) is still a challenge for numerical weather prediction (NWP), despite the continuous improvement of models and data assimilation systems. In this regard, the assimilation of radar reflectivity volumes should be beneficial, since the accuracy of analysis is the element that most affects short-term QPFs. Up to now, few attempts have been made to assimilate these observations in an operational set-up, due to the large amount of computational resources needed and due to several open issues, like the rise of imbalances in the analyses and the estimation of the observational error. In this work, we evaluate the impact of the assimilation of radar reflectivity volumes employing a local ensemble transform Kalman filter (LETKF), implemented for the convection-permitting model of the COnsortium for Small-scale MOdelling (COSMO). A 4-day test case on February 2017 is considered and the verification of QPFs is performed using the fractions skill score (FSS) and the SAL technique, an object-based method which allows one to decompose the error in precipitation fields in terms of structure (S), amplitude (A) and location (L). Results obtained assimilating both conventional data and radar reflectivity volumes are compared to those of the operational system of the Hydro-Meteo-Climate Service of the Emilia-Romagna Region (Arpae-SIMC), in which only conventional observations are employed and latent heat nudging (LHN) is applied using surface rainfall intensity (SRI) estimated from the Italian radar network data. The impact of assimilating reflectivity volumes using LETKF in combination or not with LHN is assessed. Furthermore, some sensitivity tests are performed to evaluate the effects of the length of the assimilation window and of the reflectivity observational error (roe). Moreover, balance issues are assessed in terms of kinetic energy spectra and providing some examples of how these affect prognostic fields. Results show that the assimilation of reflectivity volumes has a positive impact on QPF accuracy in the first few hours of forecast, both when it is combined with LHN or not. The improvement is further slightly enhanced when only observations collected close to the analysis time are assimilated, while the shortening of cycle length worsens QPF accuracy. Finally, the employment of too small a value of roe introduces imbalances into the analyses, resulting in a severe degradation of forecast accuracy, especially when very short assimilation cycles are used.</p
    • …
    corecore