150 research outputs found

    The cyclic stress-strain behavior of PWA 1480 at 650 deg C

    Get PDF
    The monotonic plastic flow behavior of several single crystal nickel-base, superalloys has been shown to vary significantly with crystallographic orientation. In the present study, the cyclic plastic flow response of one such alloy, PWA 1480, was examined at 650 deg C in air. Single crystal specimens aligned near several crystallographic directions were tested in fully reversed, total-strain-controlled low cycle fatigue tests at a frequency of 0.1 Hz. The cyclic stress-strain response and general cyclic hardening behavior was analyzed as a function of crystallographic orientation and inelastic strain range

    Isothermal and bithermal thermomechanical fatigue behavior of a NiCoCrAlY-coated single crystal superalloy

    Get PDF
    Specimens of single crystal PWA 1480 with group of zone axes (100) orientation, bare, or with NiCoCrAlY coating PWA 276, were tested in low cycle fatigue (LCF) at 650, 870, and 1050 C, and in simplified bithermal thermomechanical fatigue (TMF) tests between these temperatures. These tests were examined as a bridge between isothermal LCF and general TMF. In the bithermal test, an inelastic strain is applied at one temperature, T sub max, and reversed at T sub min. The out-of-phase (OP) test type imposing tension at T sub min and compression at T sub max received most study, since it was more damaging than the in-phase type. Specifically investigated were the effects of: inelastic strain range, the coating, delta T, T sub max, T sub min, and the environment

    Fatigue crack propagation of nickel-base superalloys at 650 deg C

    Get PDF
    The 650 C fatigue crack propagation behavior of two nickel-base superalloys, Rene 95 and Waspaloy, is studied with particular emphasis placed on understanding the roles of creep, environment, and two key grain boundary alloying additions, boron and zirconium. Comparison of air and vacuum data shows the air environment to be detrimental over a wide range of frequencies for both alloys. More in-depth analysis on Rene 95 shows at lower frequencies, such as 0.02 Hz, failure in air occurs by intergranular, environmentally-assisted creep crack growth, while at higher frequencies, up to 5.0 Hz, environmental interactions are still evident but creep effects are minimized. The effect of B and Zr in Waspaloy is found to be important where environmental and/or creep interactions are presented. In those instances, removal of B and Zr dramatically increases crack growth and it is therefore plausible that effective dilution of these elements may explain a previously observed trend in which crack growth rates increase with decreasing grain size

    Effect of Microstructure on Time Dependent Fatigue Crack Growth Behavior In a P/M Turbine Disk Alloy

    Get PDF
    A study was conducted to determine the processes which govern hold time crack growth behavior in the LSHR disk P/M superalloy. Nineteen different heat treatments of this alloy were evaluated by systematically controlling the cooling rate from the supersolvus solutioning step and applying various single and double step aging treatments. The resulting hold time crack growth rates varied by more than two orders of magnitude. It was shown that the associated stress relaxation behavior for these heat treatments was closely correlated with the crack growth behavior. As stress relaxation increased, the hold time crack growth resistance was also increased. The size of the tertiary gamma' in the general microstructure was found to be the key microstructural variable controlling both the hold time crack growth behavior and stress relaxation. No relationship between the presence of grain boundary M23C6 carbides and hold time crack growth was identified which further brings into question the importance of the grain boundary phases in determining hold time crack growth behavior. The linear elastic fracture mechanics parameter, Kmax, is unable to account for visco-plastic redistribution of the crack tip stress field during hold times and thus is inadequate for correlating time dependent crack growth data. A novel methodology was developed which captures the intrinsic crack driving force and was able to collapse hold time crack growth data onto a single curve

    Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    Get PDF
    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results

    Improved Method Being Developed for Surface Enhancement of Metallic Materials

    Get PDF
    Surface enhancement methods induce a layer of beneficial residual compressive stress to improve the impact (FOD) resistance and fatigue life of metallic materials. A traditional method of surface enhancement often used is shot peening, in which small steel spheres are repeatedly impinged on metallic surfaces. Shot peening is inexpensive and widely used, but the plastic deformation of 20 to 40 percent imparted by the impacts can be harmful. This plastic deformation can damage the microstructure, severely limiting the ductility and durability of the material near the surface. It has also been shown to promote accelerated relaxation of the beneficial compressive residual stresses at elevated temperatures. Low-plasticity burnishing (LPB) is being developed as an improved method for the surface enhancement of metallic materials. LPB is being investigated as a rapid, inexpensive surface enhancement method under NASA Small Business Innovation Research contracts NAS3-98034 and NAS3-99116, with supporting characterization work at NASA. Previously, roller burnishing had been employed to refine surface finish. This concept was adopted and then optimized as a means of producing a layer of compressive stress of high magnitude and depth, with minimal plastic deformation (ref. 1). A simplified diagram of the developed process is given in the following figure. A single pass of a smooth, free-rolling spherical ball under a normal force deforms the surface of the material in tension, creating a compressive layer of residual stress. The ball is supported in a fluid with sufficient pressure to lift the ball off the surface of the retaining spherical socket. The ball is only in mechanical contact with the surface of the material being burnished and is free to roll on the surface. This apparatus is designed to be mounted in the conventional lathes and vertical mills currently used to machine parts. The process has been successfully applied to nickel-base superalloys by a team from the NASA Glenn Research Center, Lambda Research, and METCUT Research, as supported by the NASA Small Business Innovation Research Phase I and II programs, the Ultra Safe program, and the Ultra- Efficient Engine Technology (UEET) Program

    Nickel Base Superalloy Turbine Disk

    Get PDF
    A low solvus, high refractory alloy having unusually versatile processing mechanical property capabilities for advanced disks and rotors in gas turbine engines. The nickel base superalloy has a composition consisting essentially of, in weight percent, 3.0-4.0 N, 0.02-0.04 B, 0.02-0.05 C, 12.0-14.0 Cr, 19.0-22.0 Co, 2.0-3.5 Mo, greater than 1.0 to 2.1 Nb, 1.3 to 2.1 Ta,3.04.OTi,4.1 to 5.0 W, 0.03-0.06 Zr, and balance essentially Ni and incidental impurities. The superalloy combines ease of processing with high temperature capabilities to be suitable for use in various turbine engine disk, impeller, and shaft applications. The Co and Cr levels of the superalloy can provide low solvus temperature for high processing versatility. The W, Mo, Ta, and Nb refractory element levels of the superalloy can provide sustained strength, creep, and dwell crack growth resistance at high temperatures

    An Abrupt Transition to an Intergranular Failure Mode in the Near-Threshold FCG Regime in Ni-Based Superalloys

    Get PDF
    Cyclic near-threshold FCG behavior of two disk superalloys was evaluated, and was shown to exhibit an unexpected sudden failure mode transition from a mostly transgranular failure mode at higher stress intensities to an almost completely intergranular failure mode in the threshold regime. The change in failure modes was associated with a crossover effect in which the conditions that produced higher FCG rates in the Paris regime resulted in lower FCG rates and increased Kth values in the threshold region. High resolution scanning and transmission electron microscopy was used to carefully characterize the crack tips at these near-threshold conditions. Formation of stable Al-oxide followed by Cr and Ti oxides was found to occur at the crack tip prior to formation of unstable oxides. To contrast with the threshold failure mode regime, a quantitative assessment of the role that the intergranular failure mode has on cyclic FCG behavior in the Paris regime was also performed. It was demonstrated that the even a very limited intergranular failure content dominates the FCG response under mixed mode failure conditions

    Creep, Fatigue and Environmental Interactions and Their Effect on Crack Growth in Superalloys

    Get PDF
    Complex interactions of creep/fatigue/environment control dwell fatigue crack growth (DFCG) in superalloys. Crack tip stress relaxation during dwells significantly changes the crack driving force and influence DFCG. Linear Elastic Fracture Mechanics, Kmax, parameter unsuitable for correlating DFCG behavior due to extensive visco-plastic deformation. Magnitude of remaining crack tip axial stresses controls DFCG resistance due to the brittle-intergranular nature of the crack growth process. Proposed a new empirical parameter, Ksrf, which incorporates visco-plastic evolution of the magnitude of remaining crack tip stresses. Previous work performed at 704C, extend the work to 760C

    A model for predicting high-temperature fatigue failure of a W/Cu composite

    Get PDF
    The material studied, a tungsten-fiber-reinforced, copper-matrix composite, is a candidate material for rocket nozzle liner applications. It was shown that at high temperatures, fatigue cracks initiate and propagate inside the copper matrix through a process of initiation, growth, and coalescence of grain boundary cavities. The ductile tungsten fibers neck and rupture locally after the surrounding matrix fails, and complete failure of the composite then ensues. A simple fatigue life prediction model is presented for the tungsten/copper composite system
    corecore