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Presentation Overview

« Complex interactions of creep/fatigue/environment control dwell fatigue
crack growth (DFCG) in superalloys.

* Crack tip stress relaxation during dwells significantly changes the crack
driving force and influence DFCG.

* Linear Elastic Fracture Mechanics, Kmax, parameter unsuitable for
correlating DFCG behavior due to extensive visco-plastic deformation.

« Magnitude of remaining crack tip axial stresses controls DFCG resistance
due to the brittle-intergranular nature of the crack growth process.

 Proposed a new empirical parameter, Ksrf, which incorporates visco-
plastic evolution of the magnitude of remaining crack tip stresses.

* Previous work performed at 704°C, extend the work to 760°C.
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Experimental

Material: Low Solvus High Refractory (LSHR) P/M nickel-base disk alloy

r

Wt. % Al

Four Supersolvus Heat Treatments Evaluated

B C

Co Cr

LSHR 3.5 .03 .045 204 123

Mo  Ni Nb Ta Ti

27 Bal. 15 15 35

Cooling Rate Aging Thermal
Condition (°C/min) Treatment Exposure
855°C/4 h
FC+2SA 202°C/min | +775°C/8h None
855°C/4 h
SC+2SA 72°C/min +775°C/8h None
855°C/4 h
FC+2SA+440| 202°C/min +775°C/8h | 815°C-440 h
855°C/4 h
SC+2SA+440| 72°C/min +775°C/8h | 815°C-440 h
90 sec dwell

v
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Separating Environmental Effects from Stress Relaxation NAP

704°C; 0.333 Hz

FC+2SA; SC+2SA
FC+2SA +815C@440h
SC+2SA+815C@440h

704°C; 2 Hz

relaxation effects.

0.333 Hz
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% -7 A SC+2SA: 815 °C/440h; Air; 0.333 Hz % A T2-K5SC2; No Exp; 2Hz
g A FC+2SA; 815°C/440h; Air; 0.333 Hz g A U4-L19FC2; 815 °C/440h; 2 Hz
A FC+2SA; No Exp.; Air; 0.333 Hz A U4-L14FC2; No Exp; 2 Hz
A SC+2SA; No Exp.; Air; 0.333 Hz A V4-L17SC2; 815 °C/440h; 2Hz
+ FC+2SA; No Exp. Vacuum: 0.333 Hz +  U4-L20FC2; 815 °C/2020h; 0.333 Hz; Vacuum
5 0 s 0 o 0 - 15 20 25 30 35 40 50
AK (MPa sqrt m) AK (MPa sqrt m)
« All four conditions show faster cyclic FCGR in air than in vacuum —
environmental debit.
« All conditions exhibited similar FCG resistance behavior but environmental
effect is smaller at higher frequency.
« Assume these conditions posses similar intrinsic environmental resistance.
« Any differences in their dwell FCG resistance are then due to stress
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Air: Cyclic vs Dwell

Vacuum: Cyclic vs Dwell
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le-5 - - - -
: : : : o A 0.333 Hz; FC+2SA; No Exp o)
) : : 704 C X 90s dwell; FC+2SA; No Exp 704 C
¥¢ FC+2SA; No Exposure: 90 sec dwell |
+ FC+2SA; No Exposure; 0.333 Hz
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Delta K (MPa m'/2) Delta K (MPa m'/2)
At 704°C:

* 90 sec dwell FCG rates in vacuum same as cyclic FCG in vacuum — No Dwell
Debit

e Creep crack growth does not contribute towards dwell crack growth

* An order of magnitude increase in DFCG in air due to environmental damage
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 Brittle-intergranular failure mode was operative in air for 90 sec dwell.

* Only transgranular failure mode operative in vacuum. No evidence of
grain boundary sliding or microvoid coalescence found (classical
creep crack growth did not directly contribute to DFCG).

« Grain boundaries are strong! Cracks avoid growth along grain
boundaries when environmental embrittlement or creep mechanisms
are not operative.
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704°C; 0.333 Hz

le-6

da/dt (m/sec)

0.333 Hz
le-6 A -
FC+2SA; SC+2SA
FC+2SA +815C@440h
SC+2SA+815C@440h
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% -7 A T A SC+2SA: 815 °C/440h; Air; 0.333 Hz
3 A FC+2SA; 815°C/440h; Air; 0.333 Hz
© A FC+2SA; No Exp.; Air; 0.333 Hz
A SC+2SA; No Exp.; Air; 0.333 Hz
+ FC+2SA; No Exp. Vacuum; 0.333 Hz
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Delta K (MPa m'/2)

le-9
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e-8 4

704°C 90s DFCG -Air r
A FC+2SA; No Exp; 90 sec dwell : : g
A SC+2SA; No Exp; 90 sec dwell  |*
O SC+2SA; 815°C-440h; 90s dwell
© FC+2SA; 815C-440h; 90s dwell : :
A ¢ FC+ SA+815 °C/440h
D At .
‘FC+2SA
SC+2SA+815 °C/440h
10x
15 20 25 30 35 40 50

| Kmax (MPa m1/2) I

Four heat treatments: similar env. resistance — 10x difference in DFCG.

e “Creepier heat treatments” i.e. slower cooling rates and thermal

exposures improve DFCG resistance.

 Environmental resistance similar — DFCG differences due to stress

relaxation.

 LEFM Kmax parameter unsuitable for correlating visco-plastic

influenced DFCG response.

VVVVVV.T |uou.yuv




National Aeronautics and Spa

Relationship Between Stress Relaxation and DFCG
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« Stress relaxation stresses decrease with slower cooling rates and fthermal exposure.

* Remaining stresses closely correlate with dwell fatigue crack growth
Yet... Classical creep propaqgation mechanisms DO NOT contribute to crack growth

* Why is magnitude of remaining stresses important? \What governs the relationship?

*Remaining Stress = Relaxation Stress
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DFCG Failure Mechanism

 Cracks grow through brittle-intergranular ‘
process controlled by crack tip tensile .'
stress rorase | Rt e
o e 5 R iAo
: : : Remainin <
» Magnitude of crack tip tensile stress ( 9 = .
_ Stress) 3 .
controls DFCG propagation rates 2 sCHisA+ 40
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* Strong, yet indirect relationship between Tip Zone
stress relaxation and DFCG behavior
Embrittled crack tip region — Interrupted 90s dwell tests
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New Empirical Parameter for Modeling Dwell Crack Growth in Air

Approach: Use stress relaxation results to simulate and normalize the
differences in the crack tip tensile stresses under visco-plastic conditions

Ksrf = Kmax/SRF

For2h No Exp K¢+ — modified stress intensity factor normalized by
SC+2SA; 815 °C\440 h

FC+2SA; 815 °C\440 h S R F
Kmax — Applied LEFM stress intensity factor during

dwells
SRF = (Uo/am)4

1200

1100 i

Y

oo ed

1000 §

900 -

800 -

Remaining Stress, (MPa)

700 A

600 -

500

| | | SRF= stress relaxation factor
e e o,=remaining stress at the onset of steady state creep
(highest remaining stress condition)
o= remaining stress for other conditions — onset of
steady state creep

= Ao™t™ + Bo"?

n2= 4 (steady state creep component per the relaxation fit)
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New Empirical Parameter for Modeling Dwell Crack Growth in Air

Plots of da/dt vs K., and K : 704°C
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A FC+2SA; No Exp; 90 sec dwell A W2-L31FC2; No Exp; 90 sec dwell
A SC+2SA; No Exp; 90 sec dwell v P3-R2-SC2; No Exp; 90 sec dwell
O SC+2SA; 815°C-440h; 90s dwell O U4-L17SC2; 815 °C/440h; 90 sec dwell
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= 1/2
K=K max/ SRF (MPa mt/2)

Kmax (MPa mt/2)

* New Ksrf parameter able to compensate for a 10x spread in DFCG
rates using standard LEFM parameter.
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DFCG in Vacuum and Air — Behavior at 760°C

Vacuum
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* In contrast to 704°C, creep crack growth
occurs in vacuum at  760°C

* More significant at high AK — increase in
crack tip plasticity

* DFCG in air 100x faster than in
vacuum.

* Environmental degradation is
predominant.... Ksrf approach may still
be applicable.
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Comparison of Microstructural Damage Mechanisms

704°C — 90 sec; Vacuum 760°C — 90 sec; Vacuum 760°C — 90 sec; Air

High Kmax 0 4 High Kmax

High Kmax

EHT =20.00 kV

igna
— WD=140mm  Sample ID = X1-L14FC2
|

EHT = 20,00 KV Signal A = CZ BSD Date 1 Feb 2017

2pm
H WD=136mm  Sample D= X2-L1sFC2 Mag= 500KX

‘Lower T. ; DFCG=Cyc FCG; -High Temp; DFCG > CFCG || *High T; DFCG>>CFCG
No evidence of creep damage || *Slow DFCG *Fast DFCG _
*Transgranular failure mode -Grain boundary creep *Environmentally induced
cavitation intergr. failure mode dominant
*Inadequate time for creep
cavitation
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760°C DFCG; K. VS K
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Kgi=Kmax/SRF (MPa m172)

* Identical methodology used to calculate K ; as at 704°C
* K, correlated DFCG within 2X for FC+2SA and SC+2SA (no exposures)

 Other two conditions experienced likely specimen mixup at the vendor...No
agreement between stress relaxation repeats, sorting out the issues...
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Conclusions

* A new empirical parameter, Ksrf, proposed to correlate DFCG in
superalloys.

* The new parameter modifies LEFM_Kmax parameter by accounting for
differences in visco-plastic evolution of the magnitude of remaining crack
tip axial stresses.

* Magnitude of remaining crack tip axial stresses controls DFCG resistance
due to the brittle-intergranular nature of the crack growth process.

* The parameter works well at 704°C and looks promising even at 760°C.

* Creep crack growth mechanisms are active at 760°C but are still
considerably lower than the environmentally induced DFCG debit.
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