47,178 research outputs found
Optical and transport properties in doped two-leg ladder antiferromagnet
Within the t-J model, the optical and transport properties of the doped
two-leg ladder antiferromagnet are studied based on the fermion-spin theory. It
is shown that the optical and transport properties of the doped two-leg ladder
antiferromagnet are mainly governed by the holon scattering. The low energy
peak in the optical conductivity is located at a finite energy, while the
resistivity exhibits a crossover from the high temperature metallic-like
behavior to the low temperature insulating-like behavior, which are consistent
with the experiments.Comment: 13 pages, 5 figures, accepted for publication in Phys. Rev. B65
(2002) (April 15 issue
Temporal and Spectral Correlations of Cyg X-1
Temporal and spectral properties of X-ray rapid variability of Cyg X-1 are
studied by an approach of correlation analysis in the time domain on different
time scales. The correlation coefficients between the total intensity in 2-60
keV and the hardness ratio of 13-60 keV to 2-6 keV band on the time scale of
about 1 ms are always negative in all states. For soft states, the correlation
coefficients are positive on all the time scales from about 0.01 s to 100 s,
which is significantly different with that for transition and low states.
Temporal structures in high energy band are narrower than that in low energy
band in quite a few cases. The delay of high energy photons relative to low
energy ones in the X-ray variations has also been revealed by the correlation
analysis. The implication of observed temporal and spectral characteristics to
the production region and mechanism of Cyg X-1 X-ray variations is discussed.Comment: 17 pages, 6 figures included, to appear in Ap
Early Tracking Behavior in Small-field Quintessence Models
We study several quintessence models which are singular at Q=0, and use a
simple initial constraint to see when they enter
tracking regime, disregarding the details of inflation. We find it can give
strong constraints for the inverse power-law potential ,
which has to enter tracking regime for . While for the
supergravity model , the constraint is much
weakened. For another kind inverse power-law potential , it exhibits no constraints.Comment: 11 pages,5 figures. Improved versio
Foundations for Cooperating with Control Noise in the Manipulation of Quantum Dynamics
This paper develops the theoretical foundations for the ability of a control
field to cooperate with noise in the manipulation of quantum dynamics. The
noise enters as run-to-run variations in the control amplitudes, phases and
frequencies with the observation being an ensemble average over many runs as is
commonly done in the laboratory. Weak field perturbation theory is developed to
show that noise in the amplitude and frequency components of the control field
can enhance the process of population transfer in a multilevel ladder system.
The analytical results in this paper support the point that under suitable
conditions an optimal field can cooperate with noise to improve the control
outcome.Comment: submitted to Phys. Rev.
Does Every Quasar Harbor A Blazar?
Assuming there is a blazar type continuum in every radio-loud quasar, we find
that the free-free heating due to the beamed infrared continuum can greatly
enhance collisionally excited lines, and thus explain the stronger CIV
1549 line emission observed in radio loud quasars. We further predict
that the CIV line should show variability {\it not} associated with observed
continuum or Ly variability.Comment: 15 pages, 3 figures; to appear in Astrophys. J. Let
Supergravity with a Gravitino LSP
We investigate supergravity models in which the lightest supersymmetric
particle (LSP) is a stable gravitino. We assume that the next-lightest
supersymmetric particle (NLSP) freezes out with its thermal relic density
before decaying to the gravitino at time t ~ 10^4 s - 10^8 s. In contrast to
studies that assume a fixed gravitino relic density, the thermal relic density
assumption implies upper, not lower, bounds on superpartner masses, with
important implications for particle colliders. We consider slepton, sneutrino,
and neutralino NLSPs, and determine what superpartner masses are viable in all
of these cases, applying CMB and electromagnetic and hadronic BBN constraints
to the leading two- and three-body NLSP decays. Hadronic constraints have been
neglected previously, but we find that they provide the most stringent
constraints in much of the natural parameter space. We then discuss the
collider phenomenology of supergravity with a gravitino LSP. We find that
colliders may provide important insights to clarify BBN and the thermal history
of the Universe below temperatures around 10 GeV and may even provide precise
measurements of the gravitino's mass and couplings.Comment: 24 pages, updated figures and minor changes, version to appear in
Phys.Rev.
Stepwise Projection: Toward Brane Setups for Generic Orbifold Singularities
The construction of brane setups for the exceptional series E6,E7,E8 of SU(2)
orbifolds remains an ever-haunting conundrum. Motivated by techniques in some
works by Muto on non-Abelian SU(3) orbifolds, we here provide an algorithmic
outlook, a method which we call stepwise projection, that may shed some light
on this puzzle. We exemplify this method, consisting of transformation rules
for obtaining complex quivers and brane setups from more elementary ones, to
the cases of the D-series and E6 finite subgroups of SU(2). Furthermore, we
demonstrate the generality of the stepwise procedure by appealing to Frobenius'
theory of Induced Representations. Our algorithm suggests the existence of
generalisations of the orientifold plane in string theory.Comment: 22 pages, 3 figure
Segmentation of Loops from Coronal EUV Images
We present a procedure which extracts bright loop features from solar EUV
images. In terms of image intensities, these features are elongated ridge-like
intensity maxima. To discriminate the maxima, we need information about the
spatial derivatives of the image intensity. Commonly, the derivative estimates
are strongly affected by image noise. We therefore use a regularized estimation
of the derivative which is then used to interpolate a discrete vector field of
ridge points ``ridgels'' which are positioned on the ridge center and have the
intrinsic orientation of the local ridge direction. A scheme is proposed to
connect ridgels to smooth, spline-represented curves which fit the observed
loops. Finally, a half-automated user interface allows one to merge or split,
eliminate or select loop fits obtained form the above procedure. In this paper
we apply our tool to one of the first EUV images observed by the SECCHI
instrument onboard the recently launched STEREO spacecraft. We compare the
extracted loops with projected field lines computed from
almost-simultaneously-taken magnetograms measured by the SOHO/MDI Doppler
imager. The field lines were calculated using a linear force-free field model.
This comparison allows one to verify faint and spurious loop connections
produced by our segmentation tool and it also helps to prove the quality of the
magnetic-field model where well-identified loop structures comply with
field-line projections. We also discuss further potential applications of our
tool such as loop oscillations and stereoscopy.Comment: 13 pages, 9 figures, Solar Physics, online firs
The Quantum Hall Effect and Inter-edge State Tunneling Within a Barrier
We have introduced a controllable nano-scale incursion into a potential
barrier imposed across a two-dimensional electron gas, and report on the
phenomena that we observe as the incursion develops. In the quantum Hall
regime, the conductance of this system displays quantized plateaus, broad
minima and oscillations. We explain these features and their evolution with
electrostatic potential geometry and magnetic field as a progression of current
patterns formed by tunneling between edge and localized states within the
barrier.Comment: RevTeX + 4 postscript figures. Self-unpacking uuencoded files.
Unpacking instructions are at the beginning of the files. To appear in
Physical Review
- âŠ