9 research outputs found

    Circadian oscillator proteins across the kingdoms of life : Structural aspects 06 Biological Sciences 0601 Biochemistry and Cell Biology

    Get PDF
    Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms and control numerous biological processes in a range of organisms. These periodic rhythms are the result of a complex interplay of interactions among clock components. These components are specific to the organism but share molecular mechanisms that are similar across kingdoms. The elucidation of clock mechanisms in different kingdoms has recently started to attain the level of structural interpretation. A full understanding of these molecular processes requires detailed knowledge, not only of the biochemical and biophysical properties of clock proteins and their interactions, but also the three-dimensional structure of clockwork components. Posttranslational modifications (such as phosphorylation) and protein-protein interactions, have become a central focus of recent research, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. The three-dimensional structures for the cyanobacterial clock components are well understood, and progress is underway to comprehend the mechanistic details. However, structural recognition of the eukaryotic clock has just begun. This review serves as a primer as the clock communities move towards the exciting realm of structural biology

    Identification of circadian clock modulators from existing drugs

    No full text
    Abstract Chronic circadian disruption due to shift work or frequent travel across time zones leads to jet‐lag and an increased risk of diabetes, cardiovascular disease, and cancer. The development of new pharmaceuticals to treat circadian disorders, however, is costly and hugely time‐consuming. We therefore performed a high‐throughput chemical screen of existing drugs for circadian clock modulators in human U2OS cells, with the aim of repurposing known bioactive compounds. Approximately 5% of the drugs screened altered circadian period, including the period‐shortening compound dehydroepiandrosterone (DHEA; also known as prasterone). DHEA is one of the most abundant circulating steroid hormones in humans and is available as a dietary supplement in the USA. Dietary administration of DHEA to mice shortened free‐running circadian period and accelerated re‐entrainment to advanced light–dark (LD) cycles, thereby reducing jet‐lag. Our drug screen also revealed the involvement of tyrosine kinases, ABL1 and ABL2, and the BCR serine/threonine kinase in regulating circadian period. Thus, drug repurposing is a useful approach to identify new circadian clock modulators and potential therapies for circadian disorders

    De Novo Transcriptomic Approach to Study Thyroid Hormone Receptor Action in Non-mammalian Models

    No full text
    International audienceThyroid hormones are pleiotropic hormones involved in chordates physiology. Understanding their functions and mechanisms is also instrumental to diagnose dys-regulations and get a predictive power that can applied to medicine, ecology, etc. Today, high-throughput sequencing technologies offer the opportunity to address this issue not only in model organisms but also in non-model organisms. Here, we describe a method that makes use of RNA-seq to address differential expression analysis in non-model organism

    The Kai-protein clock-keeping track of Cyanobacteria's daily life

    No full text
    Life has adapted to Earth's day-night cycle with the evolution of endogenous biological clocks. Whereas these circadian rhythms typically involve extensive transcription-translation feedback in higher organisms, cyanobacteria have a circadian clock, which functions primarily as a protein-based post-translational oscillator. Known as the Kai system, it consists of three proteins KaiA, KaiB, and KaiC. In this chapter, we provide a detailed structural overview of the Kai components and how they interact to produce circadian rhythms of global gene expression in cyanobacterial cells. We discuss how the circadian oscillation is coupled to gene expression, intertwined with transcription-translation feedback mechanisms, and entrained by input from the environment. We discuss the use of mathematical models and summarize insights into the cyanobacterial circadian clock from theoretical studies. The molecular details of the Kai system are well documented for the model cyanobacterium Synechococcus elongatus, but many less understood varieties of the Kai system exist across the highly diverse phylum of Cyanobacteria. Several species contain multiple kai-gene copies, while others like marine Prochlorococcus strains have a reduced kaiBC-only system, lacking kaiA. We highlight recent findings on the genomic distribution of kai genes in Bacteria and Archaea and finally discuss hypotheses on the evolution of the Kai system

    Minimal tool set for a prokaryotic circadian clock

    No full text
    corecore