2,111 research outputs found

    Spectral Transition and Torque Reversal in X-ray Pulsar 4U 1626-67

    Get PDF
    The accretion-powered, X-ray pulsar 4U 1626-67 has recently shown an abrupt torque reversal accompanied by a dramatic spectral transition and a relatively small luminosity change. The time-averaged X-ray spectrum during spin-down is considerably harder than during spin-up. The observed torque reversal can be explained by an accretion flow transition triggered by a gradual change in the mass accretion rate. The sudden transition to spin-down is caused by a change in the accretion flow rotation from Keplerian to sub-Keplerian. 4U 1626-67 is estimated to be near spin equilibrium with a mass accretion rate Mdot~2x10**16 g/s, Mdot decreasing at a rate ~6x10**14 g/s/yr, and a polar surface magnetic field of ~2b_p**{-1/2} 10^**12G where b_p is the magnetic pitch. During spin-up, the Keplerian flow remains geometrically thin and cool. During spin-down, the sub-Keplerian flow becomes geometrically thick and hot. Soft photons from near the stellar surface are Compton up-scattered by the hot accretion flow during spin-down while during spin-up such scattering is unlikely due to the small scale-height and low temperature of the flow. This mechanism accounts for the observed spectral hardening and small luminosity change. The scattering occurs in a hot radially falling column of material with a scattering depth ~0.3 and a temperature ~10^9K. The X-ray luminosity at energies >5keV could be a poor indicator of the mass accretion rate. We briefly discuss the possible application of this mechanism to GX 1+4, although there are indications that this system is significantly different from other torque-reversal systems.Comment: 10 pages, 1 figure, ApJ

    Resolving the Fe xxv Triplet with Chandra in Cen X-3

    Get PDF
    We present the results of a 45 ks Chandra observation of the high-mass X-ray binary Cen X--3 at orbital phases between 0.13 and 0.40 (in the eclipse post-egress phases). Here we concentrate on the study of discrete features in the energy spectrum at energies between 6 and 7 keV, i.e. on the iron Kα_\alpha line region, using the High Energy Transmission Grating Spectrometer on board the Chandra satellite. We clearly see a Kα_\alpha neutral iron line at ∼6.40\sim 6.40 keV and were able to distinguish the three lines of the \ion{Fe}{25} triplet at 6.61 keV, 6.67 keV, and 6.72 keV, with an equivalent width of 6 eV, 9 eV, and 5 eV, respectively. The equivalent width of the Kα_\alpha neutral iron line is 13 eV, an order of magnitude lower than previous measures. We discuss the possibility that the small equivalent width is due to a decrease of the solid angle subtended by the reflector.Comment: 11 pages, 2 figures, To appear in the Astrophysical Journal Letter

    A search for cyclotron resonance features with INTEGRAL

    Full text link
    We present an INTEGRAL observation of the Cen-Crux region in order to search the electron cyclotron resonance scattering features from the X-ray binary pulsars. During the AO1 200ks observation, we clearly detected 4 bright X-ray binaries, 1 Seyfert Galaxy, and 4 new sources in the field of view. Especially from GX301-2, the cyclotron resonance feature is detected at about 37 keV, and width of 3--4 keV. In addition, the depth of the resonance feature strongly depends on the X-ray luminosity. This is the first detection of luminosity dependence of the resonance depth. The cyclotron resonance feature is marginally detected from 1E1145.1-6141. Cen X-3 was very dim during the observation and poor statistics disable us to detect the resonance features.These are first INTEGRAL results of searching for the cyclotron resonance feature.Comment: 4pages, 8figures, To be published in the Proceedings of the 5th INTEGRAL Workshop: "The INTEGRAL Universe", February 16-20, 2004, Munic
    • …
    corecore