248 research outputs found
Convex Hull of Planar H-Polyhedra
Suppose are planar (convex) H-polyhedra, that is, $A_i \in
\mathbb{R}^{n_i \times 2}$ and $\vec{c}_i \in \mathbb{R}^{n_i}$. Let $P_i =
\{\vec{x} \in \mathbb{R}^2 \mid A_i\vec{x} \leq \vec{c}_i \}$ and $n = n_1 +
n_2$. We present an $O(n \log n)$ algorithm for calculating an H-polyhedron
with the smallest such that
A Complete Characterization of the Gap between Convexity and SOS-Convexity
Our first contribution in this paper is to prove that three natural sum of
squares (sos) based sufficient conditions for convexity of polynomials, via the
definition of convexity, its first order characterization, and its second order
characterization, are equivalent. These three equivalent algebraic conditions,
henceforth referred to as sos-convexity, can be checked by semidefinite
programming whereas deciding convexity is NP-hard. If we denote the set of
convex and sos-convex polynomials in variables of degree with
and respectively, then our main
contribution is to prove that if and
only if or or . We also present a complete
characterization for forms (homogeneous polynomials) except for the case
which is joint work with G. Blekherman and is to be published
elsewhere. Our result states that the set of convex forms in
variables of degree equals the set of sos-convex forms if
and only if or or . To prove these results, we present
in particular explicit examples of polynomials in
and
and forms in
and , and a
general procedure for constructing forms in from nonnegative but not sos forms in variables and degree .
Although for disparate reasons, the remarkable outcome is that convex
polynomials (resp. forms) are sos-convex exactly in cases where nonnegative
polynomials (resp. forms) are sums of squares, as characterized by Hilbert.Comment: 25 pages; minor editorial revisions made; formal certificates for
computer assisted proofs of the paper added to arXi
Optimality conditions for linear copositive programming problems with isolated immobile indices
In the present paper, we apply our recent results on optimality for convex semi-infinite programming to a problem of linear copositive programming (LCP). We prove explicit optimality conditions that use concepts of immobile indices and their immobility orders and do not require the Slater constraint qualification to be satisfied. The only assumption that we impose here is that the set of immobile indices consists of isolated points and hence is finite. This assumption is weaker than the Slater condition; therefore, the optimality conditions obtained in the paper are more general when compared with those usually used in LCP. We present an example of a problem in which the new optimality conditions allow one to test the optimality of a given feasible solution while the known optimality conditions fail to do this. Further, we use the immobile indices to construct a pair of regularized dual copositive problems and show that regardless of whether the Slater condition is satisfied or not, the duality gap between the optimal values of these problems is zero. An example of a problem is presented for which the standard strict duality fails, but the duality gap obtained by using the regularized dual problem vanishes.publishe
The extension problem for partial Boolean structures in Quantum Mechanics
Alternative partial Boolean structures, implicit in the discussion of
classical representability of sets of quantum mechanical predictions, are
characterized, with definite general conclusions on the equivalence of the
approaches going back to Bell and Kochen-Specker. An algebraic approach is
presented, allowing for a discussion of partial classical extension, amounting
to reduction of the number of contexts, classical representability arising as a
special case. As a result, known techniques are generalized and some of the
associated computational difficulties overcome. The implications on the
discussion of Boole-Bell inequalities are indicated.Comment: A number of misprints have been corrected and some terminology
changed in order to avoid possible ambiguitie
Quadrilateral-octagon coordinates for almost normal surfaces
Normal and almost normal surfaces are essential tools for algorithmic
3-manifold topology, but to use them requires exponentially slow enumeration
algorithms in a high-dimensional vector space. The quadrilateral coordinates of
Tollefson alleviate this problem considerably for normal surfaces, by reducing
the dimension of this vector space from 7n to 3n (where n is the complexity of
the underlying triangulation). Here we develop an analogous theory for
octagonal almost normal surfaces, using quadrilateral and octagon coordinates
to reduce this dimension from 10n to 6n. As an application, we show that
quadrilateral-octagon coordinates can be used exclusively in the streamlined
3-sphere recognition algorithm of Jaco, Rubinstein and Thompson, reducing
experimental running times by factors of thousands. We also introduce joint
coordinates, a system with only 3n dimensions for octagonal almost normal
surfaces that has appealing geometric properties.Comment: 34 pages, 20 figures; v2: Simplified the proof of Theorem 4.5 using
cohomology, plus other minor changes; v3: Minor housekeepin
A Bichromatic Incidence Bound and an Application
We prove a new, tight upper bound on the number of incidences between points
and hyperplanes in Euclidean d-space. Given n points, of which k are colored
red, there are O_d(m^{2/3}k^{2/3}n^{(d-2)/3} + kn^{d-2} + m) incidences between
the k red points and m hyperplanes spanned by all n points provided that m =
\Omega(n^{d-2}). For the monochromatic case k = n, this was proved by Agarwal
and Aronov.
We use this incidence bound to prove that a set of n points, no more than n-k
of which lie on any plane or two lines, spans \Omega(nk^2) planes. We also
provide an infinite family of counterexamples to a conjecture of Purdy's on the
number of hyperplanes spanned by a set of points in dimensions higher than 3,
and present new conjectures not subject to the counterexample.Comment: 12 page
Lines, Circles, Planes and Spheres
Let be a set of points in , no three collinear and not
all coplanar. If at most are coplanar and is sufficiently large, the
total number of planes determined is at least . For similar conditions and
sufficiently large , (inspired by the work of P. D. T. A. Elliott in
\cite{Ell67}) we also show that the number of spheres determined by points
is at least , and this bound is best
possible under its hypothesis. (By , we are denoting the
maximum number of three-point lines attainable by a configuration of
points, no four collinear, in the plane, i.e., the classic Orchard Problem.)
New lower bounds are also given for both lines and circles.Comment: 37 page
A Transfer Matrix for the Backbone Exponent of Two-Dimensional Percolation
Rephrasing the backbone of two-dimensional percolation as a monochromatic
path crossing problem, we investigate the latter by a transfer matrix approach.
Conformal invariance links the backbone dimension D_b to the highest eigenvalue
of the transfer matrix T, and we obtain the result D_b=1.6431 \pm 0.0006. For a
strip of width L, T is roughly of size 2^{3^L}, but we manage to reduce it to
\sim L!. We find that the value of D_b is stable with respect to inclusion of
additional ``blobs'' tangent to the backbone in a finite number of points.Comment: 19 page
Localization via fractional moments for models on with single-site potentials of finite support
One of the fundamental results in the theory of localization for discrete
Schr\"odinger operators with random potentials is the exponential decay of
Green's function and the absence of continuous spectrum. In this paper we
provide a new variant of these results for one-dimensional alloy-type
potentials with finitely supported sign-changing single-site potentials using
the fractional moment method.Comment: LaTeX-file, 26 pages with 2 LaTeX figure
Quantum Bounds on Bell inequalities
We have determined the maximum quantum violation of 241 tight bipartite Bell
inequalities with up to five two-outcome measurement settings per party by
constructing the appropriate measurement operators in up to six-dimensional
complex and eight-dimensional real component Hilbert spaces using numerical
optimization. Out of these inequalities 129 has been introduced here. In 43
cases higher dimensional component spaces gave larger violation than qubits,
and in 3 occasions the maximum was achieved with six-dimensional spaces. We
have also calculated upper bounds on these Bell inequalities using a method
proposed recently. For all but 20 inequalities the best solution found matched
the upper bound. Surprisingly, the simplest inequality of the set examined,
with only three measurement settings per party, was not among them, despite the
high dimensionality of the Hilbert space considered. We also computed detection
threshold efficiencies for the maximally entangled qubit pair. These could be
lowered in several instances if degenerate measurements were also allowed.Comment: 12 pages, 4 tables; corrected Table I and modified Table III to
comply with Table I; more detailed results are available at
http://www.atomki.hu/atomki/TheorPhys/Bell_violation
- …