274 research outputs found

    A new finite element formulation of three-dimensional beam theory based on interpolation of curvature

    Full text link
    A new finite element formulation of the *kinematically exact finite-strain beam theory* is presented. The finite element formulation employs the generalized virtual work in which the main role is played by the pseudo-curvature vector. The solution of the governing equations is found by using a combined Galerkin-collocation algorith

    Map schematization with circular arcs

    Get PDF
    We present an algorithm to compute schematic maps with circular arcs. Our algorithm iteratively replaces two consecutive arcs with a single arc to reduce the complexity of the output map and thus to increase its level of abstraction. Our main contribution is a method for replacing arcs that meet at high-degree vertices. This allows us to greatly reduce the output complexity, even for dense networks. We experimentally evaluate the effectiveness of our algorithm in three scenarios: territorial outlines, road networks, and metro maps. For the latter, we combine our approach with an algorithm to more evenly distribute stations. Our experiments show that our algorithm produces high-quality results for territorial outlines and metro maps. However, the lack of caricature (exaggeration of typical features) makes it less useful for road networks

    Understanding the Neural Bases of Implicit and Statistical Learning

    Get PDF
    © 2019 Cognitive Science Society, Inc. Both implicit learning and statistical learning focus on the ability of learners to pick up on patterns in the environment. It has been suggested that these two lines of research may be combined into a single construct of “implicit statistical learning.” However, by comparing the neural processes that give rise to implicit versus statistical learning, we may determine the extent to which these two learning paradigms do indeed describe the same core mechanisms. In this review, we describe current knowledge about neural mechanisms underlying both implicit learning and statistical learning, highlighting converging findings between these two literatures. A common thread across all paradigms is that learning is supported by interactions between the declarative and nondeclarative memory systems of the brain. We conclude by discussing several outstanding research questions and future directions for each of these two research fields. Moving forward, we suggest that the two literatures may interface by defining learning according to experimental paradigm, with “implicit learning” reserved as a specific term to denote learning without awareness, which may potentially occur across all paradigms. By continuing to align these two strands of research, we will be in a better position to characterize the neural bases of both implicit and statistical learning, ultimately improving our understanding of core mechanisms that underlie a wide variety of human cognitive abilities

    On Embeddability of Buses in Point Sets

    Full text link
    Set membership of points in the plane can be visualized by connecting corresponding points via graphical features, like paths, trees, polygons, ellipses. In this paper we study the \emph{bus embeddability problem} (BEP): given a set of colored points we ask whether there exists a planar realization with one horizontal straight-line segment per color, called bus, such that all points with the same color are connected with vertical line segments to their bus. We present an ILP and an FPT algorithm for the general problem. For restricted versions of this problem, such as when the relative order of buses is predefined, or when a bus must be placed above all its points, we provide efficient algorithms. We show that another restricted version of the problem can be solved using 2-stack pushall sorting. On the negative side we prove the NP-completeness of a special case of BEP.Comment: 19 pages, 9 figures, conference version at GD 201

    Evaluation, contrôle et prévention du risque de transmission du virus influenza aviaire à l'homme

    Get PDF
    Since mid-december 2003, an epizootic of highly pathogenic avian influenza (type A, sub-type H5N1) occurs in eastern and south-eastern Asia. This epizootic is historically unprecedented in its virulence, geographical spread, and economic consequences for the agricultural sector. Implications for human health were registered in Vietnam and in Thailand. This paper summarizes the current knowledge about the risk evaluation of the transmission of avian influenza virus to humans. The current asian epizootic has highlighted the key role of global health information systems and also the need for exhaustive notification of human and animal cases. It reinforces the concept of veterinary public health

    Evidence for the prepattern/cooption model of vertebrate jaw evolution

    Get PDF
    The appearance of jaws was a turning point in vertebrate evolution because it allowed primitive vertebrates to capture and process large, motile prey. The vertebrate jaw consists of separate dorsal and ventral skeletal elements connected by a joint. How this structure evolved from the unjointed gill bar of a jawless ancestor is an unresolved question in vertebrate evolution. To understand the developmental bases of this evolutionary transition, we examined the expression of 12 genes involved in vertebrate pharyngeal patterning in the modern jawless fish lamprey. We find nested expression of Dlx genes, as well as combinatorial expression of Msx, Hand and Gsc genes along the dorso-ventral (DV) axis of the lamprey pharynx, indicating gnathostome-type pharyngeal patterning evolved before the appearance of the jaw. In addition, we find that Bapx and Gdf5/6/7, key regulators of joint formation in gnathostomes, are not expressed in the lamprey first arch, whereas Barx, which is absent from the intermediate first arch in gnathostomes, marks this domain in lamprey. Taken together, these data support a new scenario for jaw evolution in which incorporation of Bapx and Gdf5/6/7 into a preexisting DV patterning program drove the evolution of the jaw by altering the identity of intermediate first-arch chondrocytes. We present this “Pre-pattern/Cooption” model as an alternative to current models linking the evolution of the jaw to the de novo appearance of sophisticated pharyngeal DV patterning

    A New Mechanistic Scenario for the Origin and Evolution of Vertebrate Cartilage

    Get PDF
    The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate “new head”. Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs). While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of modern jawed vertebrates
    corecore