6,059 research outputs found

    How to Integrate Divergent Integrals: a Pure Numerical Approach to Complex Loop Calculations

    Get PDF
    Loop calculations involve the evaluation of divergent integrals. Usually [1] one computes them in a number of dimensions different than four where the integral is convergent and then one performs the analytical continuation and considers the Laurent expansion in powers of epsilon =n-4. In this paper we discuss a method to extract directly all coefficients of this expansion by means of concrete and well defined integrals in a five dimensional space. We by-pass the formal and symbolic procedure of analytic continuation; instead we can numerically compute the integrals to extract directly both the coefficient of the pole 1/epsilon and the finite part.Comment: 13 pages, 1 Postscript figur

    Color-flow decomposition of QCD amplitudes

    Full text link
    We introduce a new color decomposition for multi-parton amplitudes in QCD, free of fundamental-representation matrices and structure constants. This decomposition has a physical interpretation in terms of the flow of color, which makes it ideal for merging with shower Monte-Carlo programs. The color-flow decomposition allows for very efficient evaluation of amplitudes with many quarks and gluons, many times faster than the standard color decomposition based on fundamental-representation matrices. This will increase the speed of event generators for multi-jet processes, which are the principal backgrounds to signals of new physics at colliders.Comment: 23 pages, 11 figures, version to appear on Phys. Rev.

    Rotor burst protection program: Experimentation to provide guidelines for the design of turbine rotor burst fragment containment rings

    Get PDF
    Empirical guidelines for the design of minimum weight turbine rotor disk fragment containment rings made from a monolithic metal were generated by experimentally establishing the relationship between a variable that provides a measure of containment ring capability and several other variables that both characterized the configurational aspects of the rotor fragments and containment ring, and had been found from exploratory testing to have had significant influence on the containment process. Test methodology and data analysis techniques are described. Results are presented in graphs and tables

    MadEvent: Automatic Event Generation with MadGraph

    Full text link
    We present a new multi-channel integration method and its implementation in the multi-purpose event generator MadEvent, which is based on MadGraph. Given a process, MadGraph automatically identifies all the relevant subprocesses, generates both the amplitudes and the mappings needed for an efficient integration over the phase space, and passes them to MadEvent. As a result, a process-specific, stand-alone code is produced that allows the user to calculate cross sections and produce unweighted events in a standard output format. Several examples are given for processes that are relevant for physics studies at present and forthcoming colliders.Comment: 11 pages, MadGraph home page at http://madgraph.physics.uiuc.ed

    Extending CKKW-merging to One-Loop Matrix Elements

    Full text link
    We extend earlier schemes for merging tree-level matrix elements with parton showers to include also merging with one-loop matrix elements. In this paper we make a first study on how to include one-loop corrections, not only for events with a given jet multiplicity, but simultaneously for several different jet multiplicities. Results are presented for the simplest non-trivial case of hadronic events at LEP as a proof-of-concept

    Four Statements about the Fourth Generation

    Get PDF
    This summary of the Workshop "Beyond the 3-generation SM in the LHC era" presents a brief discussion of the following four statements about the fourth generation: 1) It is not excluded by EW precision data; 2) It addresses some of the currently open questions; 3) It can accommodate emerging possible hints of new physics; 4) LHC has the potential to discover or fully exclude it.Comment: Summary of the "Beyond the 3-generation SM in the LHC era" Workshop, CERN, September 4-5, 2008; 7 pages. V2: updated bibliography and minor typos fixed. To appear in PMC Physics

    Quartic Gauge Couplings and the Radiation Zero in pp to l nu gamma gamma events at the LHC

    Get PDF
    We report a study of the process pp to l nu gamma gamma at CERN's Large Hadron Collider, using a leading order partonic-level event generator interfaced to the Pythia program for showering and hadronisation and a with a generic detector simulation. The process is sensitive to possible anomalous quartic gauge boson couplings of the form W W gamma gamma. It is shown how unitarity-safe limits may be placed on these anomalous couplings by applying a binned maximum likelihood fit to the distribution of the two-photon invariant mass, M(gamma gamma), below a cutoff of 1TeV. Assuming 30fb-1 of integrated luminosity, the expected limits are two orders of magnitude tighter than those available from LEP. It is also demonstrated how the Standard Model radiation zero feature of the qq to W gamma gamma process may be observed in the difference between the two-photon and charged lepton pseudo-rapidities.Comment: 9 pages, 7 figure

    Statistics and UV-IR Mixing with Twisted Poincare Invariance

    Get PDF
    We elaborate on the role of quantum statistics in twisted Poincare invariant theories. It is shown that, in order to have twisted Poincare group as the symmetry of a quantum theory, statistics must be twisted. It is also confirmed that the removal of UV-IR mixing (in the absence of gauge fields) in such theories is a natural consequence.Comment: 13 pages, LaTeX; typos correcte

    One Loop Multiphoton Helicity Amplitudes

    Full text link
    We use the solutions to the recursion relations for double-off-shell fermion currents to compute helicity amplitudes for nn-photon scattering and electron-positron annihilation to photons in the massless limit of QED. The form of these solutions is simple enough to allow {\it all}\ of the integrations to be performed explicitly. For nn-photon scattering, we find that unless n=4n=4, the amplitudes for the helicity configurations (+++...+) and (-++...+) vanish to one-loop order.Comment: 27 pages + 4 uuencoded figures (included), Fermilab-Pub-93/327-T, RevTe

    Efficient Color-Dressed Calculation of Virtual Corrections

    Get PDF
    With the advent of generalized unitarity and parametric integration techniques, the construction of a generic Next-to-Leading Order Monte Carlo becomes feasible. Such a generator will entail the treatment of QCD color in the amplitudes. We extend the concept of color dressing to one-loop amplitudes, resulting in the formulation of an explicit algorithmic solution for the calculation of arbitrary scattering processes at Next-to-Leading order. The resulting algorithm is of exponential complexity, that is the numerical evaluation time of the virtual corrections grows by a constant multiplicative factor as the number of external partons is increased. To study the properties of the method, we calculate the virtual corrections to nn-gluon scattering.Comment: 48 pages, 23 figure
    • …
    corecore