12,859 research outputs found

    Hydrogen absorption properties of amorphous (Ni0.6Nb0.4−yTay)100−xZrx membranes

    Get PDF
    Ni based amorphous materials have great potential as hydrogen purification membranes. In the present work the melt spun (Ni0.6Nb0.4−yTay)100−xZrx with y=0, 0.1 and x=20, 30 was studied. The result of X-ray diffraction spectra of the ribbons showed an amorphous nature of the alloys. Heating these ribbons below T < 400 °C, even in a hydrogen atmosphere (1−10 bar), the amorphous structure was retained. The crystallization process was characterized by differential thermal analysis and the activation energy of such process was obtained. The hydrogen absorption properties of the samples in their amorphous state were studied by the volumetric method, and the results showed that the addition of Ta did not significantly influence the absorption properties, a clear change of the hydrogen solubility was observed with the variation of the Zr content. The values of the hydrogenation enthalpy changed from ~37 kJ/mol for x=30 to ~9 kJ/mol for x=20. The analysis of the volumetric data provides the indications about the hydrogen occupation sites during hydrogenation, suggesting that at the beginning of the absorption process the deepest energy levels are occupied, while only shallower energy levels are available at higher hydrogen content, with the available interstitial sites forming a continuum of energy levels

    Flux jumps, Second Magnetization Peak anomaly and the Peak Effect phenomenon in single crystals of YNi2B2CYNi_2B_2C and LuNi2B2CLuNi_2B_2C

    Full text link
    We present magnetization measurements in single crystals of the tetragonal YNi2B2CYNi_2B_2C compound, which exhibit the phenomenon of peak effect as well as the second magnetization peak anomaly for H >> 0.5T (H || c). At the lower field (50mT << H << 200mT), we have observed the presence of flux jumps, which seem to relate to a structural change in the local symmetry of the flux line lattice (a first order re-orientation transition across a local field in some parts of the sample, in the range of 100mT to 150mT). These flux jumps are also observed in a single crystal of LuNi2B2CLuNi_2B_2C for H || c in the field region from 2 mT to 25 mT, which are compatible with the occurrence of a re-orientation transition at a lower field in a cleaner crystal of this compound, as compared to those of YNi2B2CYNi_2B_2C. Vortex phase diagrams drawn for H || c in LuNi2B2CLuNi_2B_2C and YNi2B2CYNi_2B_2C show that the ordered elastic glass phase spans a larger part of (H, T) space in the former as compared to latter, thereby, reaffirming the difference in the relative purity of the two samples.Comment: 11 pages, 14 figure

    Patient reactions to a web-based cardiovascular risk calculator in type 2 diabetes: a qualitative study in primary care.

    Get PDF
    Use of risk calculators for specific diseases is increasing, with an underlying assumption that they promote risk reduction as users become better informed and motivated to take preventive action. Empirical data to support this are, however, sparse and contradictory

    Fission widths of hot nuclei from Langevin dynamics

    Get PDF
    Fission dynamics of excited nuclei is studied in the framework of Langevin equation. The one body wall-and-window friction is used as the dissipative force in the Langevin equation. In addition to the usual wall formula friction, the chaos weighted wall formula developed earlier to account for nonintegrability of single-particle motion within the nuclear volume is also considered here. The fission rate calculated with the chaos weighted wall formula is found to be faster by about a factor of two than that obtained with the usual wall friction. The systematic dependence of fission width on temperature and spin of the fissioning nucleus is investigated and a simple parametric form of fission width is obtained.Comment: RevTex, 12 pages including 9 Postscript figure

    Physical Properties of OSIRIS-REx Target Asteroid (101955) 1999 RQ36 derived from Herschel, ESO-VISIR and Spitzer observations

    Full text link
    In September 2011, the Herschel Space Observatory performed an observation campaign with the PACS photometer observing the asteroid (101955) 1999 RQ36 in the far infrared. The Herschel observations were analysed, together with ESO VLT-VISIR and Spitzer-IRS data, by means of a thermophysical model in order to derive the physical properties of 1999 RQ36. We find the asteroid has an effective diameter in the range 480 to 511 m, a slightly elongated shape with a semi-major axis ratio of a/b=1.04, a geometric albedo of 0.045 +0.015/-0.012, and a retrograde rotation with a spin vector between -70 and -90 deg ecliptic latitude. The thermal emission at wavelengths below 12 micron -originating in the hot sub-solar region- shows that there may be large variations in roughness on the surface along the equatorial zone of 1999 RQ36, but further measurements are required for final proof. We determine that the asteroid has a disk-averaged thermal inertia of Gamma = 650 Jm-2s-0.5K-1 with a 3-sigma confidence range of 350 to 950 Jm-2s-0.5K-1, equivalent to what is observed for 25143 Itokawa and suggestive that 1999 RQ36 has a similar surface texture and may also be a rubble-pile in nature. The low albedo indicates that 1999 RQ36 very likely contains primitive volatile-rich material, consistent with its spectral type, and that it is an ideal target for the OSIRIS-REx sample return mission.Comment: Accepted for publication in Astronomy & Astrophysics, 9 pages, 7 figure

    A momentum-conserving, consistent, Volume-of-Fluid method for incompressible flow on staggered grids

    Get PDF
    The computation of flows with large density contrasts is notoriously difficult. To alleviate the difficulty we consider a consistent mass and momentum-conserving discretization of the Navier-Stokes equation. Incompressible flow with capillary forces is modelled and the discretization is performed on a staggered grid of Marker and Cell type. The Volume-of-Fluid method is used to track the interface and a Height-Function method is used to compute surface tension. The advection of the volume fraction is performed using either the Lagrangian-Explicit / CIAM (Calcul d'Interface Affine par Morceaux) method or the Weymouth and Yue (WY) Eulerian-Implicit method. The WY method conserves fluid mass to machine accuracy provided incompressiblity is satisfied which leads to a method that is both momentum and mass-conserving. To improve the stability of these methods momentum fluxes are advected in a manner "consistent" with the volume-fraction fluxes, that is a discontinuity of the momentum is advected at the same speed as a discontinuity of the density. To find the density on the staggered cells on which the velocity is centered, an auxiliary reconstruction of the density is performed. The method is tested for a droplet without surface tension in uniform flow, for a droplet suddenly accelerated in a carrying gas at rest at very large density ratio without viscosity or surface tension, for the Kelvin-Helmholtz instability, for a falling raindrop and for an atomizing flow in air-water conditions

    Physical Properties of Asteroid (308635) 2005 YU55 derived from multi-instrument infrared observations during a very close Earth-Approach

    Get PDF
    The near-Earth asteroid (308635) 2005 YU55 is a potentially hazardous asteroid which was discovered in 2005 and passed Earth on November 8th 2011 at 0.85 lunar distances. This was the closest known approach by an asteroid of several hundred metre diameter since 1976 when a similar size object passed at 0.5 lunar distances. We observed 2005 YU55 from ground with a recently developed mid-IR camera (miniTAO/MAX38) in N- and Q-band and with the Submillimeter Array (SMA) at 1.3 mm. In addition, we obtained space observations with Herschel/PACS at 70, 100, and 160 micron. Our thermal measurements cover a wide range of wavelengths from 8.9 micron to 1.3 mm and were taken after opposition at phase angles between -97 deg and -18 deg. We performed a radiometric analysis via a thermophysical model and combined our derived properties with results from radar, adaptive optics, lightcurve observations, speckle and auxiliary thermal data. We find that (308635) 2005 YU55 has an almost spherical shape with an effective diameter of 300 to 312 m and a geometric albedo pV of 0.055 to 0.075. Its spin-axis is oriented towards celestial directions (lam_ecl, beta_ecl) = (60 deg +/- 30deg, -60 deg +/- 15 deg), which means it has a retrograde sense of rotation. The analysis of all available data combined revealed a discrepancy with the radar-derived size. Our radiometric analysis of the thermal data together with the problem to find a unique rotation period might be connected to a non-principal axis rotation. A low to intermediate level of surface roughness (r.m.s. of surface slopes in the range 0.1 - 0.3) is required to explain the available thermal measurements. We found a thermal inertia in the range 350-800 Jm^-2s^-0.5K^-1, very similar to the rubble-pile asteroid (25143) Itokawa and indicating a mixture of low conductivity fine regolith with larger rocks and boulders of high thermal inertia on the surface.Comment: Accepted for publication in Astronomy & Astrophysics, 12 pages, 10 figure

    Keypad mobile phones are associated with a significant increased risk of microbial contamination compared to touch screen phones

    Get PDF
    The use of mobile phones in the clinical environment by healthcare workers has become widespread. Despite evidence that these devices can harbour pathogenic micro-organisms there is little guidance on how to reduce contamination. Recently touchscreen phones with a single flat surface have been introduced. We hypothesise that bacterial contamination of phones used in hospitals will be lower on touchscreen devices compared to keypad devices. Sixty seven mobile phones belonging to health care workers were sampled. The median colony count for touchscreen phones and keypad devices was 0·09 colony forming units (cfu)/cm2 (interquartile range (IQR) 0.05–0·14) and 0·77 cfu/cm2 (IQR range 0·45–3.52) respectively. Colony counts were significantly higher on the keypad phones (Fisher’s exact test p<0.001). Multivariate analysis showed the type of phone (keypad vs. touch screen) was associated with increased colony counts (F-statistic 14.13: p<0.001). Overall, nine (13%) phones grew either meticillin resistant Staphylococcus aureus or vancomycin resistant enterococci. Eight (24%) keypad phones were contaminated with these organisms compared with one touch screen phone (3%). Our data indicate that touchscreen mobile phones are less contaminated than their keypad counterparts, and they are less likely to harbour pathogenic bacteria in the clinical setting

    Hydrogen Bond Dynamics Near A Micellar Surface: Origin of the Universal Slow Relaxation at Complex Aqueous Interfaces

    Full text link
    The dynamics of hydrogen bonds among water molecules themselves and with the polar head groups (PHG) at a micellar surface have been investigated by long molecular dynamics simulations. The lifetime of the hydrogen bond between a PHG and a water molecule is found to be much longer than that between any two water molecules, and is likely to be a general feature of hydrophilic surfaces of organized assemblies. Analyses of individual water trajectories suggest that water molecules can remain bound to the micellar surface for more than a hundred picosecond. The activation energy for such a transition from the bound to a free state for the water molecules is estimated to be about 3.5kcal/mole.Comment: 12 pages. Phys. Rev. Lett. (Accepted) (2002
    corecore