1,031 research outputs found

    A Parallax-based Distance Estimator for Spiral Arm Sources

    Full text link
    The spiral arms of the Milky Way are being accurately located for the first time via trigonometric parallaxes of massive star forming regions with the BeSSeL Survey, using the Very Long Baseline Array and the European VLBI Network, and with the Japanese VERA project. Here we describe a computer program that leverages these results to significantly improve the accuracy and reliability of distance estimates to other sources that are known to follow spiral structure. Using a Bayesian approach, sources are assigned to arms based on their (l,b,v) coordinates with respect to arm signatures seen in CO and HI surveys. A source's kinematic distance, displacement from the plane, and proximity to individual parallax sources are also considered in generating a full distance probability density function. Using this program to estimate distances to large numbers of star forming regions, we generate a realistic visualization of the Milky Way's spiral structure as seen from the northern hemisphere.Comment: 25 pages with 16 figures; to appear in Ap

    Trigonometric Parallaxes of Massive Star Forming Regions: G012.88+0.48 and W33

    Full text link
    We report trigonometric parallaxes for water masers in the G012.88+0.48 region and in the massive star forming complex W33 (containing G012.68--0.18, G012.81--0.19, G012.90--0.24, G012.90--0.26), from the Bar and Spiral Structure Legacy (BeSSeL) survey using the Very Long Baseline Array. The parallax distances to all these masers are consistent with 2.40−0.15+0.172.40^{+0.17}_{-0.15} kpc, which locates the W33 complex and G012.88+0.48 in the Scutum spiral arm. Our results show that W33 is a single star forming complex at about two-thirds the kinematic distance of 3.7 kpc. The luminosity and mass of this region, based on the kinematic distance, have therefore been overestimated by more than a factor of two. The spectral types in the star cluster in W33\,Main have to be changed by 1.5 points to later types.Comment: 9 pages, 11 figures, 2 tables; accepted for publication at A&

    Molecular clouds and galactic spiral structure

    Get PDF
    Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide

    HI Observations of the Asymptotic Giant Branch Star X Herculis: Discovery of an Extended Circumstellar Wake Superposed on a Compact High-Velocity Cloud

    Full text link
    We report HI 21-cm line observations of the AGB star X Her obtained with the Green Bank Telescope (GBT) and the Very Large Array (VLA). We have detected HI emission totaling M_HI=2.1e-03 M_sun associated with the circumstellar envelope of the star. The HI distribution exhibits a head-tail morphology, similar to those previously observed around Mira and RS Cnc. The tail extends ~6.0' (0.24 pc) in the plane of the sky, along the direction of the star's space motion. We also detect a velocity gradient of ~6.5 km/s across the envelope, consistent with the HI tracing a turbulent wake that arises from the motion of a mass-losing star through the ISM. GBT mapping of a 2x2deg region around X Her reveals that the star lies (in projection) near the periphery of a much larger HI cloud that also exhibits signatures of ISM interaction. The properties of the cloud are consistent with those of compact high-velocity clouds. Using CO observations, we have placed an upper limit on its molecular gas content of N_H2<1.3e20 cm^-2. Although the distance to the cloud is poorly constrained, the probability of a chance coincidence in position, velocity, and apparent position angle of space motion between X Her and the cloud is extremely small, suggesting a possible physical association. However, the large HI mass of the cloud (~>2.4~M_sun) and the blueshift of its mean velocity relative to X Her are inconsistent with an origin tied directly to stellar ejection. (abridged)Comment: Accepted to AJ; 47 pages, 15 figures; version with full resolution figures available at http://www.haystack.mit.edu/hay/staff/lmatthew/matthews_XHer.pd

    The 3D inelastic analysis methods for hot section components

    Get PDF
    Advanced 3-D inelastic structural/stress analysis methods and solution strategies for more accurate and yet more cost-effective analysis of combustors, turbine blades, and vanes are being developed. The approach is to develop four different theories, one linear and three higher order with increasing complexities including embedded singularities. Progress in each area is reported

    High-Mass Star Formation in the Outer Scutum-Centaurus Arm

    Get PDF
    The Outer Scutum-Centaurus (OSC) spiral arm is the most distant molecular spiral arm in the Milky Way, but until recently little was known about this structure. Discovered by Dame and Thaddeus (2011), the OSC lies ∼\sim15 kpc from the Galactic Center. Due to the Galactic warp, it rises to nearly 4∘^{\circ} above the Galactic Plane in the first Galactic quadrant, leaving it unsampled by most Galactic plane surveys. Here we observe HII region candidates spatially coincident with the OSC using the Very Large Array to image radio continuum emission from 65 targets and the Green Bank Telescope to search for ammonia and water maser emission from 75 targets. This sample, drawn from the WISE Catalog of Galactic HII Regions, represents every HII region candidate near the longitude-latitude (l,v) locus of the OSC. Coupled with their characteristic mid-infrared morphologies, detection of radio continuum emission strongly suggests that a target is a bona fide HII region. Detections of associated ammonia or water maser emission allow us to derive a kinematic distance and determine if the velocity of the region is consistent with that of the OSC. Nearly 60% of the observed sources were detected in radio continuum, and over 20% have ammonia or water maser detections. The velocities of these sources mainly place them beyond the Solar orbit. These very distant high-mass stars have stellar spectral types as early as O4. We associate high-mass star formation at 2 new locations with the OSC, increasing the total number of detected HII regions in the OSC to 12.Comment: 14 pages text and tables + 10 pages supplemental figure
    • …
    corecore