54,732 research outputs found

    Red blood cells and other non-spherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition

    Full text link
    We consider the motion of red blood cells and other non-spherical microcapsules dilutely suspended in a simple shear flow. Our analysis indicates that depending on the viscosity, membrane elasticity, geometry and shear rate, the particle exhibits either tumbling, tank-treading of the membrane about the viscous interior with periodic oscillations of the orientation angle, or intermittent behavior in which the two modes occur alternately. For red blood cells, we compute the complete phase diagram and identify a novel tank-treading-to-tumbling transition at low shear rates. Observations of such motions coupled with our theoretical framework may provide a sensitive means of assessing capsule properties.Comment: 11 pages, 4 figure

    Dimensional crossover in Sr2_2RuO4_4 within slave-boson mean-field theory

    Full text link
    Motivated by the anomalous temperature dependence of the c-axis resistivity of Sr2_2RuO4_4, the dimensional crossover from a network of perpendicular one-dimensional chains to a two-dimensional system due to a weak hybridization between the perpendicular chains is studied. The corresponding two-orbital Hubbard model is treated within a slave-boson mean-field theory (SBMFT) to take correlation effects into account such as the spin-charge separation on the one-dimensional chains. Using an RPA-like formulation for the Green's function of collective spinon-holon excitations the emergence of quasiparticles at low-temperatures is examined. The results are used to discuss the evolution of the spectral density and the c-axis transport within a tunneling approach. For the latter a regime change between low- and high-temperature regime is found in qualitative accordance with experimental data

    Swinging of red blood cells under shear flow

    Get PDF
    We reveal that under moderate shear stress (of the order of 0.1 Pa) red blood cells present an oscillation of their inclination (swinging) superimposed to the long-observed steady tanktreading (TT) motion. A model based on a fluid ellipsoid surrounded by a visco-elastic membrane initially unstrained (shape memory) predicts all observed features of the motion: an increase of both swinging amplitude and period (1/2 the TT period) upon decreasing the shear stress, a shear stress-triggered transition towards a narrow shear stress-range intermittent regime of successive swinging and tumbling, and a pure tumbling motion at lower shear stress-values.Comment: 4 pages 5 figures submitted to Physical Review Letter

    Electric field effect modulation of transition temperature, mobile carrier density and in-plane penetration depth in NdBa2Cu3O(7-delta) thin films

    Full text link
    We explore the relationship between the critical temperature, T_c, the mobile areal carrier density, n_2D, and the zero temperature magnetic in-plane penetration depth, lambda_ab(0), in very thin underdoped NdBa2Cu3O{7-delta} films near the superconductor to insulator transition using the electric field effect technique. We observe that T_c depends linearly on both, n_2D and lambda_ab(0), the signature of a quantum superconductor to insulator (QSI) transition in two dimensions with znu-bar where z is the dynamic and nu-bar the critical exponent of the in-plane correlation length.Comment: 4 pages, 4 figure

    Fluids with quenched disorder: Scaling of the free energy barrier near critical points

    Full text link
    In the context of Monte Carlo simulations, the analysis of the probability distribution PL(m)P_L(m) of the order parameter mm, as obtained in simulation boxes of finite linear extension LL, allows for an easy estimation of the location of the critical point and the critical exponents. For Ising-like systems without quenched disorder, PL(m)P_L(m) becomes scale invariant at the critical point, where it assumes a characteristic bimodal shape featuring two overlapping peaks. In particular, the ratio between the value of PL(m)P_L(m) at the peaks (PL,maxP_{L, max}) and the value at the minimum in-between (PL,minP_{L, min}) becomes LL-independent at criticality. However, for Ising-like systems with quenched random fields, we argue that instead ΔFL:=ln(PL,max/PL,min)Lθ\Delta F_L := \ln (P_{L, max} / P_{L, min}) \propto L^\theta should be observed, where θ>0\theta>0 is the "violation of hyperscaling" exponent. Since θ\theta is substantially non-zero, the scaling of ΔFL\Delta F_L with system size should be easily detectable in simulations. For two fluid models with quenched disorder, ΔFL\Delta F_L versus LL was measured, and the expected scaling was confirmed. This provides further evidence that fluids with quenched disorder belong to the universality class of the random-field Ising model.Comment: sent to J. Phys. Cond. Mat

    Thermal Conductivity of Single Wall Carbon Nanotubes: Diameter and Annealing Dependence

    Get PDF
    The thermal conductivity, k(T), of bulk single-wall carbon nanotubes (SWNT's) displays a linear temperature dependence at low T that has been attributed to 1D quantization of phonons. To explore this issue further, we have measured the k(T) of samples with varying average tube diameters. We observe linear k(T) up to higher temperatures in samples with smaller diameters, in agreement with a quantization picture. In addition, we have examined the effect of annealing on k(T). We observe an enhancement in k(T) for annealed samples which we attribute to healing of defects and removal of impurities. These measurements demonstrate how the thermal properties of an SWNT material can be controlled by manipulating its intrinsic nanoscale properties.Comment: Proc. of the XV. Int. Winterschool on Electronic Properties of Novel Materials, Kirchberg/Tirol, Austria, 200

    Preliminary results of aerial infrared surveys at Pisgah Crater, California

    Get PDF
    In-flight tests of airborne infrared scanners, and comparison with field reflectance dat

    Anisotropic magnetic diffuse scattering in an easy-plane type antiferromagnet ErNi2_{2}Ge2_{2}

    Full text link
    We report on neutron scattering studies of a rare earth intermetallic compound ErNi2_{2}Ge2_{2}. Polarized neutron scattering experiments revealed that the magnetic ordered moment m{\bm m} lies in ab-plane. Taking account of a lack of the third higher harmonic reflection, ErNi2_{2}Ge2_{2} is considered to have a helical magnetic structure. The magnetic scattering profiles along the [100][100]^{\ast}- and the [110][110]^{\ast}-directions are well described by the sum of Gaussian and modified-Lorentzian terms, even far below TNT_{\scriptsize N}, indicating that short-range orders coexist with a long-range order. Interestingly, the modified-Lorentzian-type diffuse scattering is not present in the profiles along the [001][001]^{\ast}-direction. The anisotropy of the diffuse scattering suggests that the short-range-order consists of one dimensional long-range helices along the c-axis.Comment: 4 pages, to be published in J. Phys.: Condens. Matter (HFM2008

    Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory

    Get PDF
    We uniquely determine the infrared asymptotics of Green functions in Landau gauge Yang-Mills theory. They have to satisfy both, Dyson-Schwinger equations and functional renormalisation group equations. Then, consistency fixes the relation between the infrared power laws of these Green functions. We discuss consequences for the interpretation of recent results from lattice QCD.Comment: 24 pages, 8 figure
    corecore