66 research outputs found

    CodY, a pleiotropic regulator, influences multicellular behaviour and efficient production of virulence factors in Bacillus cereus

    Get PDF
    In response to nutrient limitation in the environment, the global transcriptional regulator CodY modulates various pathways in low G+C Gram-positive bacteria. In Bacillus subtilis CodY triggers adaptation to starvation by secretion of proteases coupled to the expression of amino acid transporters. Furthermore, it is involved in modulating survival strategies like sporulation, motility, biofilm formation, and CodY is also known to affect virulence factor production in pathogenic bacteria. In this study, the role of CodY in Bacillus cereus ATCC 14579, the enterotoxin-producing type strain, is investigated. A marker-less deletion mutant of codY (?codY) was generated in B. cereus and the transcriptome changes were surveyed using DNA microarrays. Numerous genes involved in biofilm formation and amino acid transport and metabolism were upregulated and genes associated with motility and virulence were repressed upon deletion of codY. Moreover, we found that CodY is important for efficient production of toxins and for adapting from nutrient-rich to nutrient-limited growth conditions of B. cereus. In contrast, biofilm formation is highly induced in the ?codY mutant, suggesting that CodY represses biofilm formation. Together, these results indicate that CodY plays a crucial role in the growth and persistence of B. cereus in different environments such as soil, food, insect guts and the human body

    Formation of Very Large Conductance Channels by Bacillus cereus Nhe in Vero and GH4 Cells Identifies NheA + B as the Inherent Pore-Forming Structure

    Get PDF
    The nonhemolytic enterotoxin (Nhe) produced by Bacillus cereus is a pore-forming toxin consisting of three components, NheA, -B and -C. We have studied effects of Nhe on primate epithelial cells (Vero) and rodent pituitary cells (GH4) by measuring release of lactate dehydrogenase (LDH), K+ efflux and the cytosolic Ca2+ concentration ([Ca2+]i). Plasma membrane channel events were monitored by patch-clamp recordings. Using strains of B. cereus lacking either NheA or -C, we examined the functional role of the various components. In both cell types, NheA + B + C induced release of LDH and K+ as well as Ca2+ influx. A specific monoclonal antibody against NheB abolished LDH release and elevation of [Ca2+]i. Exposure to NheA + B caused a similar K+ efflux and elevation of [Ca2+]i as NheA + B + C in GH4 cells, whereas in Vero cells the rate of K+ efflux was reduced by 50% and [Ca2+]i was unaffected. NheB + C had no effect on either cell type. Exposure to NheA + B + C induced large-conductance steps in both cell types, and similar channel insertions were observed in GH4 cells exposed to NheA + B. In Vero cells, NheA + B induced channels of much smaller conductance. NheB + C failed to insert membrane channels. The conductance of the large channels in GH4 cells was about 10 nS. This is the largest channel conductance reported in cell membranes under quasi-physiological conditions. In conclusion, NheA and NheB are necessary and sufficient for formation of large-conductance channels in GH4 cells, whereas in Vero cells such large-conductance channels are in addition dependent on NheC

    Sequential Broadening of CTL Responses in Early HIV-1 Infection Is Associated with Viral Escape

    Get PDF
    BACKGROUND: Antigen-specific CTL responses are thought to play a central role in containment of HIV-1 infection, but no consistent correlation has been found between the magnitude and/or breadth of response and viral load changes during disease progression. METHODS AND FINDINGS: We undertook a detailed investigation of longitudinal CTL responses and HIV-1 evolution beginning with primary infection in 11 untreated HLA-A2 positive individuals. A subset of patients developed broad responses, which selected for consensus B epitope variants in Gag, Pol, and Nef, suggesting CTL-induced adaptation of HIV-1 at the population level. The patients who developed viral escape mutations and broad autologous CTL responses over time had a significantly higher increase in viral load during the first year of infection compared to those who did not develop viral escape mutations. CONCLUSIONS: A continuous dynamic development of CTL responses was associated with viral escape from temporarily effective immune responses. Our results suggest that broad CTL responses often represent footprints left by viral CTL escape rather than effective immune control, and help explain earlier findings that fail to show an association between breadth of CTL responses and viral load. Our results also demonstrate that CTL pressures help to maintain certain elements of consensus viral sequence, which likely represent viral escape from common HLA-restricted CTL responses. The ability of HIV to evolve to escape CTL responses restricted by a common HLA type highlights the challenges posed to development of an effective CTL-based vaccine

    Cross-Sectional Detection of Acute HIV Infection: Timing of Transmission, Inflammation and Antiretroviral Therapy

    Get PDF
    BACKGROUND: Acute HIV infection (AHI) is a critical phase of infection when irreparable damage to the immune system occurs and subjects are very infectious. We studied subjects with AHI prospectively to develop better treatment and public health interventions. METHODS: Cross-sectional screening was employed to detect HIV RNA positive, antibody negative subjects. Date of HIV acquisition was estimated from clinical history and correlated with sequence diversity assessed by single genome amplification (SGA). Twenty-two cytokines/chemokines were measured from enrollment through week 24. RESULTS: Thirty-seven AHI subjects were studied. In 7 participants with limited exposure windows, the median exposure to HIV occurred 14 days before symptom onset. Lack of viral sequence diversification confirmed the short duration of infection. Transmission dates estimated by SGA/sequencing using molecular clock models correlated with transmission dates estimated by symptom onset in individuals infected with single HIV variants (mean of 28 versus 33 days). Only 10 of 22 cytokines/chemokines were significantly elevated among AHI participants at enrollment compared to uninfected controls, and only 4 participants remained seronegative at enrollment. DISCUSSION: The results emphasize the difficulty in recruiting subjects early in AHI. Viral sequence diversity proved accurate in estimating time of infection. Regardless of aggressive screening, peak viremia and inflammation occurred before enrollment and potential intervention. Given the personal and public health importance, improved AHI detection is urgently needed

    IlsA, A Unique Surface Protein of Bacillus cereus Required for Iron Acquisition from Heme, Hemoglobin and Ferritin

    Get PDF
    The human opportunistic pathogen Bacillus cereus belongs to the B. cereus group that includes bacteria with a broad host spectrum. The ability of these bacteria to colonize diverse hosts is reliant on the presence of adaptation factors. Previously, an IVET strategy led to the identification of a novel B. cereus protein (IlsA, Iron-regulated leucine rich surface protein), which is specifically expressed in the insect host or under iron restrictive conditions in vitro. Here, we show that IlsA is localized on the surface of B. cereus and hence has the potential to interact with host proteins. We report that B. cereus uses hemoglobin, heme and ferritin, but not transferrin and lactoferrin. In addition, affinity tests revealed that IlsA interacts with both hemoglobin and ferritin. Furthermore, IlsA directly binds heme probably through the NEAT domain. Inactivation of ilsA drastically decreases the ability of B. cereus to grow in the presence of hemoglobin, heme and ferritin, indicating that IlsA is essential for iron acquisition from these iron sources. In addition, the ilsA mutant displays a reduction in growth and virulence in an insect model. Hence, our results indicate that IlsA is a key factor within a new iron acquisition system, playing an important role in the general virulence strategy adapted by B. cereus to colonize susceptible hosts

    Challenges of diagnosing acute HIV-1 subtype C infection in African women: performance of a clinical algorithm and the need for point-of-care nucleic-acid based testing.

    Get PDF
    Background. Prompt diagnosis of acute HIV infection (AHI) benefits the individual and provides opportunities for public health intervention. The aim of this study was to describe most common signs and symptoms of AHI, correlate these with early disease progression and develop a clinical algorithm to identify acute HIV cases in resource limited setting. Methods. 245 South African women at high-risk of HIV-1 were assessed for AHI and received monthly HIV-1 antibody and RNA testing. Signs and symptoms at first HIV-positive visit were compared to HIV-negative visits. Logistic regression identified clinical predictors of AHI. A model-based score was assigned to each predictor to create a risk score for every woman. Results. Twenty-eight women seroconverted after a total of 390 person-years of follow-up with an HIV incidence of 7.2/100 person-years (95%CI 4.5–9.8). Fifty-seven percent reported ≥1 sign or symptom at the AHI visit. Factors predictive of AHI included age <25 years (OR = 3.2; 1.4–7.1), rash (OR = 6.1; 2.4–15.4), sore throat (OR = 2.7; 1.0–7.6), weight loss (OR = 4.4; 1.5–13.4), genital ulcers (OR = 8.0; 1.6–39.5) and vaginal discharge (OR = 5.4; 1.6–18.4). A risk score of 2 correctly predicted AHI in 50.0% of cases. The number of signs and symptoms correlated with higher HIV-1 RNA at diagnosis (r = 0.63; p<0.001). Conclusions. Accurate recognition of signs and symptoms of AHI is critical for early diagnosis of HIV infection. Our algorithm may assist in risk-stratifying individuals for AHI, especially in resource-limited settings where there is no routine testing for AHI. Independent validation of the algorithm on another cohort is needed to assess its utility further. Point-of-care antigen or viral load technology is required, however, to detect asymptomatic, antibody negative cases enabling early interventions and prevention of transmission

    Identification and structural analysis of the tripartite α-pore forming toxin of Aeromonas hydrophila

    Get PDF
    The alpha helical CytolysinA family of pore forming toxins (α-PFT) contains single, two, and three component members. Structures of the single component Eschericia coli ClyA and the two component Yersinia enterolytica YaxAB show both undergo conformational changes from soluble to pore forms, and oligomerization to produce the active pore. Here we identify tripartite α-PFTs in pathogenic Gram negative bacteria, including Aeromonas hydrophila (AhlABC). We show that the AhlABC toxin requires all three components for maximal cell lysis. We present structures of pore components which describe a bi-fold hinge mechanism for soluble to pore transition in AhlB and a contrasting tetrameric assembly employed by soluble AhlC to hide their hydrophobic membrane associated residues. We propose a model of pore assembly where the AhlC tetramer dissociates, binds a single membrane leaflet, recruits AhlB promoting soluble to pore transition, prior to AhlA binding to form the active hydrophilic lined pore
    corecore