578 research outputs found

    Multi-Dimensional Astrophysical Structural and Dynamical Analysis I. Development of a Nonlinear Finite Element Approach

    Full text link
    A new field of numerical astrophysics is introduced which addresses the solution of large, multidimensional structural or slowly-evolving problems (rotating stars, interacting binaries, thick advective accretion disks, four dimensional spacetimes, etc.). The technique employed is the Finite Element Method (FEM), commonly used to solve engineering structural problems. The approach developed herein has the following key features: 1. The computational mesh can extend into the time dimension, as well as space, perhaps only a few cells, or throughout spacetime. 2. Virtually all equations describing the astrophysics of continuous media, including the field equations, can be written in a compact form similar to that routinely solved by most engineering finite element codes. 3. The transformations that occur naturally in the four-dimensional FEM possess both coordinate and boost features, such that (a) although the computational mesh may have a complex, non-analytic, curvilinear structure, the physical equations still can be written in a simple coordinate system independent of the mesh geometry. (b) if the mesh has a complex flow velocity with respect to coordinate space, the transformations will form the proper arbitrary Lagrangian- Eulerian advective derivatives automatically. 4. The complex difference equations on the arbitrary curvilinear grid are generated automatically from encoded differential equations. This first paper concentrates on developing a robust and widely-applicable set of techniques using the nonlinear FEM and presents some examples.Comment: 28 pages, 9 figures; added integral boundary conditions, allowing very rapidly-rotating stars; accepted for publication in Ap.

    Two-Fluid MHD Simulations of Converging HI Flows in the Interstellar Medium. I: Methodology and Basic Results

    Full text link
    We develop an unconditionally stable numerical method for solving the coupling between two fluids (frictional forces/heatings, ionization, and recombination), and investigate the dynamical condensation process of thermally unstable gas that is provided by the shock waves in a weakly ionized and magnetized interstellar medium by using two-dimensional two-fluid magnetohydrodynamical simulations. If we neglect the effect of magnetic field, it is known that condensation driven by thermal instability can generate high density clouds whose physical condition corresponds to molecular clouds (precursor of molecular clouds). In this paper, we study the effect of magnetic field on the evolution of supersonic converging HI flows and focus on the case in which the orientation of magnetic field to converging flows is orthogonal. We show that the magnetic pressure gradient parallel to the flows prevents the formation of high density and high column density clouds, but instead generates fragmented, filamentary HI clouds. With this restricted geometry, magnetic field drastically diminishes the opportunity of fast molecular cloud formation directly from the warm neutral medium, in contrast to the case without magnetic field.Comment: ApJ accepte

    Collisionless solar wind protons: A comparison of kinetic and hydrodynamic descriptions

    Get PDF
    Kinetic and hydrodynamic descriptions of a collisionless solar wind proton gas are compared. Heat conduction and viscosity are neglected in the hydrodynamic formulation but automatically included in the kinetic formulation. The results of the two models are very nearly the same, indicating that heat conduction and viscosity are not important in the solar wind proton gas beyond about 0.1 AU. It is concluded that the hydrodynamic equations provide a valid description of the collisionless solar wind protons, and hence that future models of the quiet solar wind should be based on a hydrodynamic formulation

    Solving One Dimensional Scalar Conservation Laws by Particle Management

    Full text link
    We present a meshfree numerical solver for scalar conservation laws in one space dimension. Points representing the solution are moved according to their characteristic velocities. Particle interaction is resolved by purely local particle management. Since no global remeshing is required, shocks stay sharp and propagate at the correct speed, while rarefaction waves are created where appropriate. The method is TVD, entropy decreasing, exactly conservative, and has no numerical dissipation. Difficulties involving transonic points do not occur, however inflection points of the flux function pose a slight challenge, which can be overcome by a special treatment. Away from shocks the method is second order accurate, while shocks are resolved with first order accuracy. A postprocessing step can recover the second order accuracy. The method is compared to CLAWPACK in test cases and is found to yield an increase in accuracy for comparable resolutions.Comment: 15 pages, 6 figures. Submitted to proceedings of the Fourth International Workshop Meshfree Methods for Partial Differential Equation

    Athena: A New Code for Astrophysical MHD

    Full text link
    A new code for astrophysical magnetohydrodynamics (MHD) is described. The code has been designed to be easily extensible for use with static and adaptive mesh refinement. It combines higher-order Godunov methods with the constrained transport (CT) technique to enforce the divergence-free constraint on the magnetic field. Discretization is based on cell-centered volume-averages for mass, momentum, and energy, and face-centered area-averages for the magnetic field. Novel features of the algorithm include (1) a consistent framework for computing the time- and edge-averaged electric fields used by CT to evolve the magnetic field from the time- and area-averaged Godunov fluxes, (2) the extension to MHD of spatial reconstruction schemes that involve a dimensionally-split time advance, and (3) the extension to MHD of two different dimensionally-unsplit integration methods. Implementation of the algorithm in both C and Fortran95 is detailed, including strategies for parallelization using domain decomposition. Results from a test suite which includes problems in one-, two-, and three-dimensions for both hydrodynamics and MHD are given, not only to demonstrate the fidelity of the algorithms, but also to enable comparisons to other methods. The source code is freely available for download on the web.Comment: 61 pages, 36 figures. accepted by ApJ

    Dispersive wave runup on non-uniform shores

    Get PDF
    Historically the finite volume methods have been developed for the numerical integration of conservation laws. In this study we present some recent results on the application of such schemes to dispersive PDEs. Namely, we solve numerically a representative of Boussinesq type equations in view of important applications to the coastal hydrodynamics. Numerical results of the runup of a moderate wave onto a non-uniform beach are presented along with great lines of the employed numerical method (see D. Dutykh et al. (2011) for more details).Comment: 8 pages, 6 figures, 18 references. This preprint is submitted to FVCA6 conference proceedings. Other author papers can be downloaded at http://www.lama.univ-savoie.fr/~dutykh

    It's a wonderful tail: the mass loss history of Mira

    Full text link
    Recent observations of the Mira AB binary system have revealed a surrounding arc-like structure and a stream of material stretching 2 degrees away in opposition to the arc. The alignment of the proper motion vector and the arc-like structure shows the structures to be a bow shock and accompanying tail. We have successfully hydrodynamically modelled the bow shock and tail as the interaction between the asymptotic giant branch (AGB) wind launched from Mira A and the surrounding interstellar medium. Our simulations show that the wake behind the bow shock is turbulent: this forms periodic density variations in the tail similar to those observed. We investigate the possiblity of mass-loss variations, but find that these have limited effect on the tail structure. The tail is estimated to be approximately 450,000 years old, and is moving with a velocity close to that of Mira itself. We suggest that the duration of the high mass-loss phase on the AGB may have been underestimated. Finally, both the tail curvature and the rebrightening at large distance can be qualitatively understood if Mira recently entered the Local Bubble. This is estimated to have occured 17 pc downstream from its current location.Comment: 12 pages, 3 colour figures, accepted by ApJ Part II (Letters

    The triggering of MHD instabilities through photospheric footpoint motions

    Get PDF
    The results of 3D numerical simulations modelling the twisting of a coronal loop due to photospheric vortex motions are presented. The simulations are carried out using an initial purely axial field and an initial equilibrium configuration with twist, . The non-linear and resistive evolutions of the instability are followed. The magnetic field is twisted by the boundary motions into a loop which initially has boundary layers near the photospheric boundaries as has been suggested by previous work. The boundary motions increase the twist in the loop until it becomes unstable. For both cases the boundary twisting triggers the kink instability. In both cases a helical current structure wraps itself around the kinked central current. This current scales linearly with grid resolution indicating current sheet formation. For the cases studied 35-40% of the free magnetic energy is released. This is sufficient to explain the energy released in a compact loop flare

    An Euler Solver Based on Locally Adaptive Discrete Velocities

    Full text link
    A new discrete-velocity model is presented to solve the three-dimensional Euler equations. The velocities in the model are of an adaptive nature---both the origin of the discrete-velocity space and the magnitudes of the discrete-velocities are dependent on the local flow--- and are used in a finite volume context. The numerical implementation of the model follows the near-equilibrium flow method of Nadiga and Pullin [1] and results in a scheme which is second order in space (in the smooth regions and between first and second order at discontinuities) and second order in time. (The three-dimensional code is included.) For one choice of the scaling between the magnitude of the discrete-velocities and the local internal energy of the flow, the method reduces to a flux-splitting scheme based on characteristics. As a preliminary exercise, the result of the Sod shock-tube simulation is compared to the exact solution.Comment: 17 pages including 2 figures and CMFortran code listing. All in one postscript file (adv.ps) compressed and uuencoded (adv.uu). Name mail file `adv.uu'. Edit so that `#!/bin/csh -f' is the first line of adv.uu On a unix machine say `csh adv.uu'. On a non-unix machine: uudecode adv.uu; uncompress adv.tar.Z; tar -xvf adv.ta
    corecore