348 research outputs found

    The dynamical Green's function and an exact optical potential for electron-molecule scattering including nuclear dynamics

    Get PDF
    We derive a rigorous optical potential for electron-molecule scattering including the effects of nuclear dynamics by extending the common many-body Green's function approach to optical potentials beyond the fixed-nuclei limit for molecular targets. Our formalism treats the projectile electron and the nuclear motion of the target molecule on the same footing whereby the dynamical optical potential rigorously accounts for the complex many-body nature of the scattering target. One central result of the present work is that the common fixed-nuclei optical potential is a valid adiabatic approximation to the dynamical optical potential even when projectile and nuclear motion are (nonadiabatically) coupled as long as the scattering energy is well below the electronic excitation thresholds of the target. For extremely low projectile velocities, however, when the cross sections are most sensitive to the scattering potential, we expect the influences of the nuclear dynamics on the optical potential to become relevant. For these cases, a systematic way to improve the adiabatic approximation to the dynamical optical potential is presented that yields non-local operators with respect to the nuclear coordinates.Comment: 22 pages, no figures, accepted for publ., Phys. Rev.

    A dual role for SAGA-associated factor 29 (SGF29) in ER stress survival by coordination of both histone H3 acetylation and histone H3 lysine-4 trimethylation

    Get PDF
    The SGF29 protein binds to tri-methylated lysine-4 of histone H3 (H3K4me3), which is a histone modification associated with active promoters. Human SGF29 is a subunit of the histone acetyltransferase module of the SAGA (Spt-Ada-Gcn5 acetyltransferase) and ATAC (Ada-Two-A-containing 2A) co-activator complexes. Previous work revealed that the SAGA complex is recruited to endoplasmic reticulum (ER) stress target genes and required for their induction. Here, we report the involvement of SGF29 in the survival of human cells from ER stress. SGF29 knockdown results in impaired transcription of the ER stress genes GRP78 and CHOP. Besides histone H3K14 acetylation, we find that SGF29 is also required for the maintenance of H3K4me3 at these genes, which is already present prior to ER stress. Reduced levels of H3K4me3 in the absence of SGF29 correlate with a decreased association of ASH2L, which is a core component of the SET1/MLL complexes, to GFP78 and CHOP. In conclusion, our results suggest that the H3K4me3-binding protein SGF29 plays a central and dual role in the ER stress response. Prior to ER stress, the protein coordinates H3K4me3 levels, thereby maintaining a 'poised' chromatin state on ER stress target gene promoters. Following ER stress induction, SGF29 is required for increased H3K14 acetylation on these genes, which then results in full transcriptional activation, thereby promoting cell survival

    The effect of Spirulina sauce, as a functional food, on cardiometabolic risk factors, oxidative stress biomarkers, glycemic profile, and liver enzymes in nonalcoholic fatty liver disease patients:A randomized double-blinded clinical trial

    Get PDF
    OBJECTIVE: This study sought to investigate the effect of Spirulina on cardiometabolic risk factors, oxidative stress biomarkers, glycemic profile, and liver enzymes in nonalcoholic fatty liver disease (NAFLD) patients. METHODS: This randomized, double‐blind clinical trial was performed on 46 NAFLD patients. Subjects were allocated to consume either Spirulina sauce or placebo, each 20 g/day for 8 weeks. Fatty liver grade, liver enzymes, anthropometric parameters, blood pressure, and serum lipids, glucose, insulin, malondialdehyde, and antioxidant capacity were assessed pre‐ and postintervention. RESULTS: Fatty liver grade was significantly different between the two groups. A significant change for ALT (alanine aminotransferase) and AST (aspartate aminotransferase) was seen between the two groups (p = .03 and .02, respectively), while ALP (alkaline phosphatase) serum levels were not significantly different within or between groups. Pertaining to glycemic profile, all variables, except HOMA‐IR, were not significantly different within or between groups. Finally, statistically significant changes were seen in both MDA (malondialdehyde) and TAC (total antioxidant capacity) among the groups (p = .04 and <.001, respectively). CONCLUSIONS: Spirulina may improve fatty liver grade by modifying liver enzymes, oxidative stress, and some lipid profiles; however, there was effect of Spirulina on anthropometric characteristics and blood pressure

    Overexpression of transmembrane protein 168 in the mouse nucleus accumbens induces anxiety and sensorimotor gating deficit

    Get PDF
    Transmembrane protein 168 (TMEM168) comprises 697 amino acid residues, including some putative transmembrane domains. It is reported that TMEM168 controls methamphetamine (METH) dependence in the nucleus accumbens (NAc) of mice. Moreover, a strong link between METH dependence-induced adaptive changes in the brain and mood disorders has been evaluated. In the present study, we investigated the effects of accumbal TMEM168 in a battery of behavioral paradigms. The adeno-associated virus (AAV) Tmem168 vector was injected into the NAc of C57BL/6J mice (NAc-TMEM mice). Subsequently, the accumbal TMEM168 mRNA was increased approximately by seven-fold when compared with the NAc-Mock mice (controls). The NAc-TMEM mice reported no change in the locomotor activity, cognitive ability, social interaction, and depression-like behaviors; however, TMEM168 overexpression enhanced anxiety in the elevated-plus maze and light/dark box test. The increased anxiety was reversed by pretreatment with the antianxiety drug diazepam (0.3 mg/kg i.p.). Moreover, the NAc-TMEM mice exhibited decreased prepulse inhibition (PPI) in the startle response test, and the induced schizophrenia-like behavior was reversed by pretreatment with the antipsychotic drug risperidone (0.01 mg/kg i.p.). Furthermore, accumbal TMEM168 overexpression decreased the basal levels of extracellular GABA in the NAc and the high K+ (100 mM)-stimulated GABA elevation; however, the total contents of GABA in the NAc remained unaffected. These results suggest that the TMEM168-regulated GABAergic neuronal system in the NAc might become a novel target while studying the etiology of anxiety and sensorimotor gating deficits

    Genome size evolution at the speciation level: The cryptic species complex Brachionus plicatilis (Rotifera)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer <it>Brachionus plicatilis</it>, a cryptic species complex consisting of at least 14 closely related species.</p> <p>Results</p> <p>We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels - within and among genealogical species - and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called <it>B</it>. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence.</p> <p>Conclusions</p> <p>Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex.</p
    corecore