80 research outputs found

    The Use of Twitter to Track Levels of Disease Activity and Public Concern in the U.S. during the Influenza A H1N1 Pandemic

    Get PDF
    Twitter is a free social networking and micro-blogging service that enables its millions of users to send and read each other's “tweets,” or short, 140-character messages. The service has more than 190 million registered users and processes about 55 million tweets per day. Useful information about news and geopolitical events lies embedded in the Twitter stream, which embodies, in the aggregate, Twitter users' perspectives and reactions to current events. By virtue of sheer volume, content embedded in the Twitter stream may be useful for tracking or even forecasting behavior if it can be extracted in an efficient manner. In this study, we examine the use of information embedded in the Twitter stream to (1) track rapidly-evolving public sentiment with respect to H1N1 or swine flu, and (2) track and measure actual disease activity. We also show that Twitter can be used as a measure of public interest or concern about health-related events. Our results show that estimates of influenza-like illness derived from Twitter chatter accurately track reported disease levels

    Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees

    Get PDF
    The spread of infectious diseases crucially depends on the pattern of contacts among individuals. Knowledge of these patterns is thus essential to inform models and computational efforts. Few empirical studies are however available that provide estimates of the number and duration of contacts among social groups. Moreover, their space and time resolution are limited, so that data is not explicit at the person-to-person level, and the dynamical aspect of the contacts is disregarded. Here, we want to assess the role of data-driven dynamic contact patterns among individuals, and in particular of their temporal aspects, in shaping the spread of a simulated epidemic in the population. We consider high resolution data of face-to-face interactions between the attendees of a conference, obtained from the deployment of an infrastructure based on Radio Frequency Identification (RFID) devices that assess mutual face-to-face proximity. The spread of epidemics along these interactions is simulated through an SEIR model, using both the dynamical network of contacts defined by the collected data, and two aggregated versions of such network, in order to assess the role of the data temporal aspects. We show that, on the timescales considered, an aggregated network taking into account the daily duration of contacts is a good approximation to the full resolution network, whereas a homogeneous representation which retains only the topology of the contact network fails in reproducing the size of the epidemic. These results have important implications in understanding the level of detail needed to correctly inform computational models for the study and management of real epidemics

    Using Web Search Query Data to Monitor Dengue Epidemics: A New Model for Neglected Tropical Disease Surveillance

    Get PDF
    A variety of obstacles, including bureaucracy and lack of resources, delay detection and reporting of dengue and exist in many countries where the disease is a major public health threat. Surveillance efforts have turned to modern data sources such as Internet usage data. People often seek health-related information online and it has been found that the frequency of, for example, influenza-related web searches as a whole rises as the number of people sick with influenza rises. Tools have been developed to help track influenza epidemics by finding patterns in certain web search activity. However, few have evaluated whether this approach would also be effective for other diseases, especially those that affect many people, that have severe consequences, or for which there is no vaccine. In this study, we found that aggregated, anonymized Google search query data were also capable of tracking dengue activity in Bolivia, Brazil, India, Indonesia and Singapore. Whereas traditional dengue data from official sources are often not available until after a long delay, web search query data is available for analysis within a day. Therefore, because it could potentially provide earlier warnings, these data represent a valuable complement to traditional dengue surveillance

    Spin Glass and Antiferromagnetic Behaviour in a Diluted fcc Antiferromagnet

    Full text link
    We report on a Monte Carlo study of a diluted Ising antiferromagnet on a fcc lattice. This is a typical model example of a highly frustrated antiferromagnet, and we ask, whether sufficient random dilution of spins does produce a spin glass phase. Our data strongly indicate the existence of a spin glass transition for spin--concentration p<0.75p<0.75: We find a divergent spin glass susceptibility and a divergent spin glass correlation length, whereas the antiferromagnetic correlation length saturates in this regime. Furthermore, we find a first order phase transition to an antiferromagnet for 1p>0.851\ge p>0.85, which becomes continuous in the range 0.85>p>0.750.85>p>0.75. Finite size scaling is employed to obtain critical exponents. We compare our results with experimental systems as diluted frustrated antiferromagnets as Zn1pMnpTe{\rm Zn_{1-p}Mn_{p}Te}.Comment: 29 pages (revtex) and 10 figures uuencoded and Z-compresse

    Electromagnetic suspension and levitation

    Full text link

    Characterization of a Peptide Domain within the GB Virus C NS5A Phosphoprotein that Inhibits HIV Replication

    Get PDF
    BACKGROUND:GBV-C infection is associated with prolonged survival in HIV-infected people and GBV-C inhibits HIV replication in co-infection models. Expression of the GBV-C nonstructural phosphoprotein 5A (NS5A) decreases surface levels of the HIV co-receptor CXCR4, induces the release of SDF-1 and inhibits HIV replication in Jurkat CD4+ T cell lines. METHODOLOGY/PRINCIPAL FINDINGS:Jurkat cell lines stably expressing NS5A protein and peptides were generated and HIV replication in these cell lines assessed. HIV replication was significantly inhibited in all cell lines expressing NS5A amino acids 152-165. Substitution of an either alanine or glycine for the serine at position 158 (S158A or S158G) resulted in a significant decrease in the HIV inhibitory effect. In contrast, substituting a phosphomimetic amino acid (glutamic acid; S158E) inhibited HIV as well as the parent peptide. HIV inhibition was associated with lower levels of surface expression of the HIV co-receptor CXCR4 and increased release of the CXCR4 ligand, SDF-1 compared to control cells. Incubation of CD4+ T cell lines with synthetic peptides containing amino acids 152-167 or the S158E mutant peptide prior to HIV infection resulted in HIV replication inhibition compared to control peptides. CONCLUSIONS/SIGNIFICANCE:Expression of GBV-C NS5A amino acids 152-165 are sufficient to inhibit HIV replication in vitro, and the serine at position 158 appears important for this effect through either phosphorylation or structural changes in this peptide. The addition of synthetic peptides containing 152-167 or the S158E substitution to Jurkat cells resulted in HIV replication inhibition in vitro. These data suggest that GBV-C peptides or a peptide mimetic may offer a novel, cellular-based approach to antiretroviral therapy

    Modifiable risk factors associated with bone deficits in childhood cancer survivors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine the prevalence and severity of bone deficits in a cohort of childhood cancer survivors (CCS) compared to a healthy sibling control group, and the modifiable factors associated with bone deficits in CCS.</p> <p>Methods</p> <p>Cross-sectional study of bone health in 319 CCS and 208 healthy sibling controls. Bone mineral density (BMD) was measured by dual-energy x-ray absorptiometry (DXA). Generalized estimating equations were used to compare measures between CCS and controls. Among CCS, multivariable logistic regression was used to evaluate odds ratios for BMD Z-score ≤ -1.</p> <p>Results</p> <p>All subjects were younger than 18 years of age. Average time since treatment was 10.1 years (range 4.3 - 17.8 years). CCS were 3.3 times more likely to have whole body BMD Z-score ≤ -1 than controls (95% CI: 1.4-7.8; p = 0.007) and 1.7 times more likely to have lumbar spine BMD Z-score ≤ -1 than controls (95% CI: 1.0-2.7; p = 0.03). Among CCS, hypogonadism, lower lean body mass, higher daily television/computer screen time, lower physical activity, and higher inflammatory marker IL-6, increased the odds of having a BMD Z-score ≤ -1.</p> <p>Conclusions</p> <p>CCS, less than 18 years of age, have bone deficits compared to a healthy control group. Sedentary lifestyle and inflammation may play a role in bone deficits in CCS. Counseling CCS and their caretakers on decreasing television/computer screen time and increasing activity may improve bone health.</p

    Contrasting Roles for TLR Ligands in HIV-1 Pathogenesis

    Get PDF
    The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs). Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs) 5 and 9, we examined their effect on human immunodeficiency virus (HIV)-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist) treatment enhanced replication of CC chemokine receptor 5 (CCR 5)-tropic and CXC chemokine receptor 4 (CXCR4)-tropic HIV-1, treatment with oligodeoxynucleotide (ODN) M362 (TLR9 agonist) suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD) 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA)-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention
    corecore