8,239 research outputs found

    Design and fabrication of an autonomous rendezvous and docking sensor using off-the-shelf hardware

    Get PDF
    NASA Marshall Space Flight Center (MSFC) has developed and tested an engineering model of an automated rendezvous and docking sensor system composed of a video camera ringed with laser diodes at two wavelengths and a standard remote manipulator system target that has been modified with retro-reflective tape and 830 and 780 mm optical filters. TRW has provided additional engineering analysis, design, and manufacturing support, resulting in a robust, low cost, automated rendezvous and docking sensor design. We have addressed the issue of space qualification using off-the-shelf hardware components. We have also addressed the performance problems of increased signal to noise ratio, increased range, increased frame rate, graceful degradation through component redundancy, and improved range calibration. Next year, we will build a breadboard of this sensor. The phenomenology of the background scene of a target vehicle as viewed against earth and space backgrounds under various lighting conditions will be simulated using the TRW Dynamic Scene Generator Facility (DSGF). Solar illumination angles of the target vehicle and candidate docking target ranging from eclipse to full sun will be explored. The sensor will be transportable for testing at the MSFC Flight Robotics Laboratory (EB24) using the Dynamic Overhead Telerobotic Simulator (DOTS)

    Anomaly Cancelation in Field Theory and F-theory on a Circle

    Full text link
    We study the manifestation of local gauge anomalies of four- and six-dimensional field theories in the lower-dimensional Kaluza-Klein theory obtained after circle compactification. We identify a convenient set of transformations acting on the whole tower of massless and massive states and investigate their action on the low-energy effective theories in the Coulomb branch. The maps employ higher-dimensional large gauge transformations and precisely yield the anomaly cancelation conditions when acting on the one-loop induced Chern-Simons terms in the three- and five-dimensional effective theory. The arising symmetries are argued to play a key role in the study of the M-theory to F-theory limit on Calabi-Yau manifolds. For example, using the fact that all fully resolved F-theory geometries inducing multiple Abelian gauge groups or non-Abelian groups admit a certain set of symmetries, we are able to generally show the cancelation of pure Abelian or pure non-Abelian anomalies in these models.Comment: 48 pages, 2 figures; v2: typos corrected, comments on circle fluxes adde

    Surface Properties of Aperiodic Ising Quantum Chains

    Full text link
    We consider Ising quantum chains with quenched aperiodic disorder of the coupling constants given through general substitution rules. The critical scaling behaviour of several bulk and surface quantities is obtained by exact real space renormalization.Comment: 4 pages, RevTex, reference update

    Bose Einstein Condensate in a Box

    Full text link
    Bose-Einstein condensates have been produced in an optical box trap. This novel optical trap type has strong confinement in two directions comparable to that which is possible in an optical lattice, yet produces individual condensates rather than the thousands typical of a lattice. The box trap is integrated with single atom detection capability, paving the way for studies of quantum atom statistics.Comment: 4 pages, 5 figure

    Spectroscopy of Ultracold, Trapped Cesium Feshbach Molecules

    Full text link
    We explore the rich internal structure of Cs_2 Feshbach molecules. Pure ultracold molecular samples are prepared in a CO_2-laser trap, and a multitude of weakly bound states is populated by elaborate magnetic-field ramping techniques. Our methods use different Feshbach resonances as input ports and various internal level crossings for controlled state transfer. We populate higher partial-wave states of up to eight units of rotational angular momentum (l-wave states). We investigate the molecular structure by measurements of the magnetic moments for various states. Avoided level crossings between different molecular states are characterized through the changes in magnetic moment and by a Landau-Zener tunneling method. Based on microwave spectroscopy, we present a precise measurement of the magnetic-field dependent binding energy of the weakly bound s-wave state that is responsible for the large background scattering length of Cs. This state is of particular interest because of its quantum-halo character.Comment: 15 pages, 12 figures, 4 table

    Adaptive Horizon Model Predictive Control and Al'brekht's Method

    Get PDF
    A standard way of finding a feedback law that stabilizes a control system to an operating point is to recast the problem as an infinite horizon optimal control problem. If the optimal cost and the optmal feedback can be found on a large domain around the operating point then a Lyapunov argument can be used to verify the asymptotic stability of the closed loop dynamics. The problem with this approach is that is usually very difficult to find the optimal cost and the optmal feedback on a large domain for nonlinear problems with or without constraints. Hence the increasing interest in Model Predictive Control (MPC). In standard MPC a finite horizon optimal control problem is solved in real time but just at the current state, the first control action is implimented, the system evolves one time step and the process is repeated. A terminal cost and terminal feedback found by Al'brekht's methoddefined in a neighborhood of the operating point is used to shorten the horizon and thereby make the nonlinear programs easier to solve because they have less decision variables. Adaptive Horizon Model Predictive Control (AHMPC) is a scheme for varying the horizon length of Model Predictive Control (MPC) as needed. Its goal is to achieve stabilization with horizons as small as possible so that MPC methods can be used on faster and/or more complicated dynamic processes.Comment: arXiv admin note: text overlap with arXiv:1602.0861

    Conductance-strain behavior in silver-nanowire composites: network properties of a tunable strain sensor

    Get PDF
    Highly flexible and conductive nano-composite materials are promising candidates for stretchable and flexible electronics. We report on the strain–resistance relation of a silver-nanowire photopolymer composite during repetitive stretching. Resistance measurements reveal a gradual change of the hysteretic resistance curves towards a linear and non-hysteretic behavior. Furthermore, a decrease in resistance and an increase in electrical sensitivity to strain over the first five stretching cycles can be observed. Sensitivity gauge factors between 10 and 500 at 23% strain were found depending on the nanowire concentration and stretching cycle. We model the electrical behavior of the investigated silver nanowire composites upon repetitive stretching considering the strain induced changes in the local force distribution within the polymer matrix and the tunnel resistance between the nanowires by using a Monte Carlo method

    Massive Abelian Gauge Symmetries and Fluxes in F-theory

    Get PDF
    F-theory compactified on a Calabi-Yau fourfold naturally describes non-Abelian gauge symmetries through the singularity structure of the elliptic fibration. In contrast Abelian symmetries are more difficult to study because of their inherently global nature. We argue that in general F-theory compactifications there are massive Abelian symmetries, such as the uplift of the Abelian part of the U(N) gauge group on D7-branes, that arise from non-Kahler resolutions of the dual M-theory setup. The four-dimensional F-theory vacuum with vanishing expectation values for the gauge fields corresponds to the Calabi-Yau limit. We propose that fluxes that are turned on along these U(1)s are uplifted to non-harmonic four-form fluxes. We derive the effective four-dimensional gauged supergravity resulting from F-theory compactifications in the presence of the Abelian gauge factors including the effects of possible fluxes on the gauging, tadpoles and matter spectrum.Comment: 49 page
    corecore