3,779 research outputs found

    Status of center dominance in various center gauges

    Get PDF
    We review arguments for center dominance in center gauges where vortex locations are correctly identified. We introduce an appealing interpretation of the maximal center gauge, discuss problems with Gribov copies, and a cure to the problems through the direct Laplacian center gauge. We study correlations between direct and indirect Laplacian center gauges.Comment: Presented by S. Olejnik at the NATO Advanced Research Workshop "Confinement, Topology, and other Non-Perturbative Aspects of QCD", Jan. 21-27, 2002, Stara Lesna, Slovakia. 10 pages, 3 figures (8 EPS files), uses crckapb.st

    The Changing AGN Population

    Full text link
    We investigate how the fraction of broad-line sources in the AGN population changes with X-ray luminosity and redshift. We first construct the rest-frame hard-energy (2-8 keV) X-ray luminosity function (HXLF) at z=0.1-1 using Chandra Lockman Hole-Northwest wide-area data, Chandra Deep Field-North 2 Ms data, other Chandra deep field data, and the ASCA Large Sky Survey data. We find that broad-line AGNs dominate above 3e43 ergs/s and have a mean luminosity of 1.3e44 ergs/s. Type II AGNs can only become an important component of the X-ray population at Seyfert-like X-ray luminosities. We then construct z=0.1-0.5 and z=0.5-1 HXLFs and compare them with both the local HXLF measured from HEAO-1 A2 survey data and the z=1.5-3 HXLF measured from soft-energy (0.5-2 keV) Chandra and ROSAT data. We find that the number density of >1e44 ergs/s sources (quasars) steadily declines with decreasing redshift, while the number density of 1e43-1e44 ergs/s sources peaks at z=0.5-1. Strikingly, however, the number density of broad-line AGNs remains roughly constant with redshift while their average luminosities decline at the lower redshifts, showing another example of cosmic downsizing.Comment: Accepted by The Astrophysical Journal Letters, 5 page

    Remarks on the Gribov Problem in Direct Maximal Center Gauge

    Get PDF
    We review the equivalence of maximal center gauge fixing to the problem of finding the best fit, to a given lattice gauge field, by a thin vortex configuration. This fit is necessarily worst at the location of P-plaquettes. We then compare the fits achieved in Gribov copies generated by (i) over-relaxation; (ii) over-relaxation after Landau gauge preconditioning; and (iii) simulated annealing. Simulated annealing yields the best fit if all links on the lattice are included, but the situation changes if we consider only the lattice volume exterior to P-plaquettes. In this exterior region, the fit is best for Gribov copies generated by over-relaxation, and worst for Gribov copies generated after Landau gauge preconditioning. The two fitting criteria (including or not including the P-plaquettes) yield string tensions differing by -34% to +20% respectively, relative to the full string tension. Our usual procedure (``quenched minimization'') seems to be a compromise between these criteria, and yields string tensions at an intermediate value close to the full string tension.Comment: 14 pages, 6 figure

    On the relevance of center vortices to QCD

    Get PDF
    In a numerical experiment, we remove center vortices from an ensemble of lattice SU(2) gauge configurations. This removal adds short-range disorder. Nevertheless, we observe long-range order in the modified ensemble: confinement is lost and chiral symmetry is restored (together with trivial topology), proving that center vortices are responsible for both phenomena. As for the Abelian monopoles, they survive but their percolation properties are lost.Comment: 4 pages, 5 figures; discussion expanded, text compressed... to appear in Phys. Rev. Let

    Importance of cooling in triggering the collapse of hypermassive neutron stars

    Full text link
    The inspiral and merger of a binary neutron star (NSNS) can lead to the formation of a hypermassive neutron star (HMNS). As the HMNS loses thermal pressure due to neutrino cooling and/or centrifugal support due to gravitational wave (GW) emission, and/or magnetic breaking of differential rotation it will collapse to a black hole. To assess the importance of shock-induced thermal pressure and cooling, we adopt an idealized equation of state and perform NSNS simulations in full GR through late inspiral, merger, and HMNS formation, accounting for cooling. We show that thermal pressure contributes significantly to the support of the HMNS against collapse and that thermal cooling accelerates its "delayed" collapse. Our simulations demonstrate explicitly that cooling can induce the catastrophic collapse of a hot hypermassive neutron star formed following the merger of binary neutron stars. Thus, cooling physics is important to include in NSNS merger calculations to accurately determine the lifetime of the HMNS remnant and to extract information about the NS equation of state, cooling mechanisms, bar instabilities and B-fields from the GWs emitted during the transient phase prior to BH formation.Comment: 13 pages, 7 figures, matches published versio

    Some Cautionary Remarks on Abelian Projection and Abelian Dominance

    Get PDF
    Some critical remarks are presented, concerning the abelian projection theory of quark confinement.Comment: Talk presented at LATTICE96(topology) plenary session, uses psfig and espcrc2 package

    Manipulating the torsion of molecules by strong laser pulses

    Full text link
    A proof-of-principle experiment is reported, where torsional motion of a molecule, consisting of a pair of phenyl rings, is induced by strong laser pulses. A nanosecond laser pulse spatially aligns the carbon-carbon bond axis, connecting the two phenyl rings, allowing a perpendicularly polarized, intense femtosecond pulse to initiate torsional motion accompanied by an overall rotation about the fixed axis. The induced motion is monitored by femtosecond time-resolved Coulomb explosion imaging. Our theoretical analysis accounts for and generalizes the experimental findings.Comment: 4 pages, 4 figures, submitted to PRL; Major revision of the presentation of the material; Correction of ion labels in Fig. 2(a

    Abelian Dominance in Wilson Loops

    Get PDF
    It has been conjectured that the Abelian projection of QCD is responsible for the confinement of color. Using a gauge independent definition of the Abelian projection which does {\it not} employ any gauge fixing, we provide a strong evidence for the Abelian dominance in Wilson loop integral. In specific we prove that the gauge potential which contributes to the Wilson loop integral is precisely the one restricted by the Abelian projection.Comment: 4 pages, no figure, revtex. Phys. Rev. D in pres

    Time-frequency detection algorithm for gravitational wave bursts

    Get PDF
    An efficient algorithm is presented for the identification of short bursts of gravitational radiation in the data from broad-band interferometric detectors. The algorithm consists of three steps: pixels of the time-frequency representation of the data that have power above a fixed threshold are first identified. Clusters of such pixels that conform to a set of rules on their size and their proximity to other clusters are formed, and a final threshold is applied on the power integrated over all pixels in such clusters. Formal arguments are given to support the conjecture that this algorithm is very efficient for a wide class of signals. A precise model for the false alarm rate of this algorithm is presented, and it is shown using a number of representative numerical simulations to be accurate at the 1% level for most values of the parameters, with maximal error around 10%.Comment: 26 pages, 15 figures, to appear in PR

    The static and dynamic conductivity of warm dense Aluminum and Gold calculated within a density functional approach

    Full text link
    The static resistivity of dense Al and Au plsmas are calculated where all the needed inputs are obtained from density functional theory (DFT). This is used as input for a study of the dynamic conductivity. These calculations involve a self-consistent determination of (i) the equation of state (EOS) and the ionization balance, (ii) evaluation of the ion-ion, and ion-electron pair-distribution functions, (iii) Determination of the scattering amplitudes, and finally the conductivity. We present data for the static resistivity of Al for compressions 0.1-2.0, and in the temperature range T= 0.1 - 10 eV. Results for Au in the same temperature range and for compressions 0.1-1.0 is also given. In determining the dynamic conductivity for a range of frequencies consistent with standard laser probes, a knowledge of the electronic eigenstates and occupancies of Al- or Au plasma becomes necessary. They are calculated using a neutral-pseudoatom model. We examine a number of first-principles approaches to the optical conductivity, including many-body perturbation theory, molecular-dynamics evaluations, and simplified time-dependent DFT. The modification to the Drude conductivity that arises from the presence of shallow bound states in typical Al-plasmas is examined and numerical results are given at the level of the Fermi Golden rule and an approximate form of time-dependent DFT.Comment: 5 figures, Latex original. Cross-referencced to PLASMA PHYSIC
    corecore