research

The static and dynamic conductivity of warm dense Aluminum and Gold calculated within a density functional approach

Abstract

The static resistivity of dense Al and Au plsmas are calculated where all the needed inputs are obtained from density functional theory (DFT). This is used as input for a study of the dynamic conductivity. These calculations involve a self-consistent determination of (i) the equation of state (EOS) and the ionization balance, (ii) evaluation of the ion-ion, and ion-electron pair-distribution functions, (iii) Determination of the scattering amplitudes, and finally the conductivity. We present data for the static resistivity of Al for compressions 0.1-2.0, and in the temperature range T= 0.1 - 10 eV. Results for Au in the same temperature range and for compressions 0.1-1.0 is also given. In determining the dynamic conductivity for a range of frequencies consistent with standard laser probes, a knowledge of the electronic eigenstates and occupancies of Al- or Au plasma becomes necessary. They are calculated using a neutral-pseudoatom model. We examine a number of first-principles approaches to the optical conductivity, including many-body perturbation theory, molecular-dynamics evaluations, and simplified time-dependent DFT. The modification to the Drude conductivity that arises from the presence of shallow bound states in typical Al-plasmas is examined and numerical results are given at the level of the Fermi Golden rule and an approximate form of time-dependent DFT.Comment: 5 figures, Latex original. Cross-referencced to PLASMA PHYSIC

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020