7,062 research outputs found

    Nonperiodic echoes from mushroom billiard hats

    Full text link
    Mushroom billiards have the remarkable property to show one or more clear cut integrable islands in one or several chaotic seas, without any fractal boundaries. The islands correspond to orbits confined to the hats of the mushrooms, which they share with the chaotic orbits. It is thus interesting to ask how long a chaotic orbit will remain in the hat before returning to the stem. This question is equivalent to the inquiry about delay times for scattering from the hat of the mushroom into an opening where the stem should be. For fixed angular momentum we find that no more than three different delay times are possible. This induces striking nonperiodic structures in the delay times that may be of importance for mesoscopic devices and should be accessible to microwave experiments.Comment: Submitted to Phys. Rev. E without the appendi

    Chaotic Scattering in the Regime of Weakly Overlapping Resonances

    Full text link
    We measure the transmission and reflection amplitudes of microwaves in a resonator coupled to two antennas at room temperature in the regime of weakly overlapping resonances and in a frequency range of 3 to 16 GHz. Below 10.1 GHz the resonator simulates a chaotic quantum system. The distribution of the elements of the scattering matrix S is not Gaussian. The Fourier coefficients of S are used for a best fit of the autocorrelation function if S to a theoretical expression based on random--matrix theory. We find very good agreement below but not above 10.1 GHz

    Induced Time-Reversal Symmetry Breaking Observed in Microwave Billiards

    Full text link
    Using reciprocity, we investigate the breaking of time-reversal (T) symmetry due to a ferrite embedded in a flat microwave billiard. Transmission spectra of isolated single resonances are not sensitive to T-violation whereas those of pairs of nearly degenerate resonances do depend on the direction of time. For their theoretical description a scattering matrix model from nuclear physics is used. The T-violating matrix elements of the effective Hamiltonian for the microwave billiard with the embedded ferrite are determined experimentally as functions of the magnetization of the ferrite.Comment: 4 pages, 4 figure

    Promoting sustainability in quality improvement: an evaluation of a web-based continuing education program in blood pressure measurement.

    Get PDF
    BACKGROUND: The accuracy of blood pressure measurement is variable in office-based settings. Even when staff training programs are effective, knowledge and skills decay over time, supporting the need for ongoing staff training. We evaluated whether a web-based continuing education program in blood pressure measurement reinforced knowledge and skills among clinical staff and promoted sustainability of an existing quality improvement program. METHODS: Medical assistants and nurses at six primary care clinics within a health system enrolled in a 30-min online educational program designed to refresh their knowledge of blood pressure measurement. A 20-question pre- and post-intervention survey addressed learners\u27 knowledge and attitudes. Direct observation of blood pressure measurement technique before and after the intervention was performed. Differences in responses to pre- and post-module knowledge and attitudes questions and in observation data were analyzed using chi-square tests and simple logistic regression. RESULTS: All 88 clinical staff members participated in the program and completed the evaluation survey. Participants answered 80.6% of questions correctly before the module and 93.4% afterwards (p \u3c 0.01). Scores improved significantly among staff from all job types. Licensed practical nurses and staff who had been in their current job at least a year were more likely to answer questions correctly than registered nurses and those in their current job less than a year. Attitudes toward correct blood pressure measurement were high at baseline and did not improve significantly. Prior to the intervention, staff adhered to 9 of 18 elements of the recommended technique during at least 90% of observations. Following the program, staff was more likely to explain the protocol, provide a rest period, measure an average blood pressure, and record the average blood pressure, but less likely to measure blood pressure with the arm at heart level and use the right arm. CONCLUSIONS: We designed, implemented, and evaluated a web-based educational program to improve knowledge, skills, and attitudes in blood pressure measurement and use of an automated device among nurses and medical assistants in ambulatory care. The program reinforced knowledge related to recommended blood pressure measurement technique. TRIAL REGISTRATION: Retrospectively registered with ClincalTrials.gov on March 22, 2012; registration number NCT01566864

    The PARSE Programming Paradigm. Part I: Software Development Methodology. Part II: Software Development Support Tools

    Get PDF
    The programming methodology of PARSE (parallel software environment), a software environment being developed for reconfigurable non-shared memory parallel computers, is described. This environment will consist of an integrated collection of language interfaces, automatic and semi-automatic debugging and analysis tools, and operating system —all of which are made more flexible by the use of a knowledge-based implementation for the tools that make up PARSE. The programming paradigm supports the user freely choosing among three basic approaches /abstractions for programming a parallel machine: logic-based descriptive, sequential-control procedural, and parallel-control procedural programming. All of these result in efficient parallel execution. The current work discusses the methodology underlying PARSE, whereas the companion paper, “The PARSE Programming Paradigm — II: Software Development Support Tools,” details each of the component tools

    Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric

    Get PDF
    BACKGROUND: Glaucoma is a chronic neurodegenerative disease of the retina, characterized by the degeneration of axons in the optic nerve and retinal ganglion cell apoptosis. DBA/2J inbred mice develop chronic hereditary glaucoma and are an important model system to study the molecular mechanisms underlying this disease and novel therapeutic interventions designed to attenuate the loss of retinal ganglion cells. Although the genetics of this disease in these mice are well characterized, the etiology of its progression, particularly with respect to retinal degeneration, is not. We have used two separate labeling techniques, post-mortem DiI labeling of axons and ganglion cell-specific expression of the βGeo reporter gene, to evaluate the time course of optic nerve degeneration and ganglion cell loss, respectively, in aging mice. RESULTS: Optic nerve degeneration, characterized by axon loss and gliosis is first apparent in mice between 8 and 9 months of age. Degeneration appears to follow a retrograde course with axons dying from their proximal ends toward the globe. Although nerve damage is typically bilateral, the progression of disease is asymmetric between the eyes of individual mice. Some nerves also exhibit focal preservation of tracts of axons generally in the nasal peripheral region. Ganglion cell loss, as a function of the loss of βGeo expression, is evident in some mice between 8 and 10 months of age and is prevalent in the majority of mice older than 10.5 months. Most eyes display a uniform loss of ganglion cells throughout the retina, but many younger mice exhibit focal loss of cells in sectors extending from the optic nerve head to the retinal periphery. Similar to what we observe in the optic nerves, ganglion cell loss is often asymmetric between the eyes of the same animal. CONCLUSION: A comparison of the data collected from the two cohorts of mice used for this study suggests that the initial site of damage in this disease is to the axons in the optic nerve, followed by the subsequent death of the ganglion cell soma

    Experimental Test of a Trace Formula for a Chaotic Three Dimensional Microwave Cavity

    Full text link
    We have measured resonance spectra in a superconducting microwave cavity with the shape of a three-dimensional generalized Bunimovich stadium billiard and analyzed their spectral fluctuation properties. The experimental length spectrum exhibits contributions from periodic orbits of non-generic modes and from unstable periodic orbit of the underlying classical system. It is well reproduced by our theoretical calculations based on the trace formula derived by Balian and Duplantier for chaotic electromagnetic cavities.Comment: 4 pages, 5 figures (reduced quality
    corecore