
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

6-1-1987

The PARSE Programming Paradigm. Part I:
Software Development Methodology. Part II:
Software Development Support Tools
T. L. Casavant
Purdue University

Henry G. Dietz
Purdue University

P. C.-Y. Sheu
Purdue University

H. J. Siegel
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Casavant, T. L.; Dietz, Henry G.; Sheu, P. C.-Y.; and Siegel, H. J., "The PARSE Programming Paradigm. Part I: Software Development
Methodology. Part II: Software Development Support Tools" (1987). Department of Electrical and Computer Engineering Technical
Reports. Paper 566.
https://docs.lib.purdue.edu/ecetr/566

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F566&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F566&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F566&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F566&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F566&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F566&utm_medium=PDF&utm_campaign=PDFCoverPages

The PARSE
Programming Paradigm
Part I: Software Development Methodology
Part II: Software Development Support Tools

The PARSE Group

TR-EE 87-22
June 1987

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

The PARSE Programming Paradigm----Is
Software Development Methodology

T.L. Casavant, H.G. Dietz, P.C-Y. Sheu, H.J. Siegel

PASM Parallel Processing Laboratory
School of Electrical Engineering

Purdue University
West Lafayette, IN 47907

January 1987

ABSTRACT

The programming methodology of PARSE (parallel software
environment), a software environment being developed for
reconfigurable non-shared memory parallel computers, is described.
This environment will consist of an integrated collection of
language interfaces, automatic and semi-automatic debugging and
analysis tools, and operating system —all of which are made more
flexible by the use of a knowledge-based implementation for the
tools that make up PARSE.

The programming paradigm supports the user freely choosing
among three basic approaches /abstractions for programming a
parallel machine: logic-based descriptive, sequential-control pro
cedural, and parallel-control procedural programming. All of these
result in efficient parallel execution.

The current work discusses the methodology underlying
PARSE, whereas the companion paper, “The PARSE Program
ming Paradigm — II: Software Development Support Tools,”
details each of the component tools.

This research was supported in part by the Air Force Office of Scientific Research under grant number
F49620-86-K-0006.

- 2 -

1. Introduction

Production of high quality software is a critical bottleneck in the efficient

utilization of computer systems today. Production of software for single proces

sor systems presents the problems of:
• making efficient use of programmer time,
• producing software which is efficient, and
• producing software which is reliable.

In parallel computing systems, each of the above problems exists; in addi

tion, however, there are problems concerning:
• partitioning problems for parallel execution,
• debugging/preventing deadlock and race conditions (debugging asynchro

nous execution in general), and
• production of efficient, “high performance” solutions (also predicting per

formance of solutions).

These problems will be addressed by providing, for the class of reconfigurable

non-shared memory parallel machines, an integrated collection of language

interfaces, debugging and analysis tools, and operating system1: PARSE

(parallel software environment).

The PARSE model is described from the user’s point of view. An imple

mentation of PARSE is currently under development.

In PARSE, a choice of language interfaces provides a programmer with the

ability to select the most appropriate or natural specification of a problem or a

solution to a problem. The user may chose to employ any one or any combina

tion of:
• Descriptive language.
• Sequential procedural language.
• Parallel procedural language.

1 The operating system is not discussed in the current work.

-3 -

In any case, efficient, highly-reliable, parallel code results. This is achieved

using PARSE’s knowledge-based software tools to automatically or semi-

automatically create, modify, or improve a problem’s solution or to optimize its

implementation. The knowledge base serves both to enhance the system’s abili

ties and to make the implementation of PARSE more flexible and general.

Problems whose solutions are most naturally stated in descriptive form can

be presented to PARSE in that form — without a detailed procedural

specification. Using knowledge-based transformation, PARSE provides the

potential for efficient parallel execution of such descriptions by compiling logic-

based descriptions into re-uses of known procedural solutions to logic

specifications of sub-problems. These procedures may be either sequentially

control-structured, in which case other portions of the system automatically

transform it into a parallel form, or they may be parallel control-structured.

The programmer may also choose to express an algorithm directly in a

sequential procedural notation. In sequential code, data access rights

represent the stores/fetches that a region of code might make, hence, they

represent key constraints on parallel execution of the code. Automatic and

semi-automatic tools collect needed information about data access rights, use

this information to parallelize the code, and use knowledge of target machine

characteristics to aid the programmer in improving the program.

Where a parallel procedural solution has been conceived, semi-automatic

debugging and analysis tools may be employed to predict performance and to

reproduce sequences of pseudo-random asynchronous events. Thus, the instru

mentation of hardware for debugging parallel control is avoided by utilizing

PARSE to simulate a virtual machine in software.

The current work is intended to present a user view of the PARSE para

digm and to motivate its structure. A companion paper, entitled “The PARSE

- 4 -

Programming Paradigm — II: Software Development Support Tools,” provides

details of the operation of each of the component tools.

Section 2 relates previous research to the PARSE system. The relation

ships between the various tools that constitute PARSE are described in section

3. Section 4 provides an overview of the use of knowledge within the PARSE

system. Brief descriptions of the individual tools, again from the point of view

of how they interact, are given in sections 5 through 8. Section 9 describes the

current status of PARSE.

2. Background & Overview of PARSE

A programming environment is designed to simplify the task of program

development; what constitutes a programming environment depends on the

designer’s view of the key difficulties in the software development process. One

group of environments is tailored to minimize the effort in developing large

software systems by extending concepts of modular program design. Examples

of systems motivated by this principle include Cedar [Tie84], Mesa [Swe85],

Jasmine [MaW86], and Starlite [C0A86]. Additional benefits have been gained

by applying knowledge-based program transformation (e.g., PDS [Che84], CHI

[SmK85]) or by providing intelligent programmer assistance as in Programmer’s

Apprentice [Wat81]. The primary targets for these environments are single pro

cessor systems and networked work-stations.

A second group of environments are intended to simplify development of

parallel programs. The main objective of these systems is to enhance parallel

ism in solutions as opposed to improving modularity. PTOOL [A1B86] is an

environment designed to aid the programmer in restructuring sequential pro

grams into parallel equivalents. This is accomplished by providing the program

mer with information distilled from sophisticated global flow and dependence

- 5 -

analyses of conventional FORTRAN code. Some systems, such as Poker [SnS86]

and Pisces [Pra85], have been constructed based on a small set of programming

language and operating system primitives designed to facilitate portability and

experimentation with language design. More complex systems which augment a

higher level parallel programming language with tools to aid the programmer in

visualizing program behavior have also been proposed. Among these are PIE

[SeR85] and an environment for CSP developed at Tektronix [DeS86|. Both

environments support prototyping and graphical visualization through multiple

windows which illustrate various attributes of program behavior.

PARSE is a very large environment; although most of PARSE belongs to

the second group of environments described, some portions belong to the first

group. Some of the tools in PARSE allow the user to ignore parallelism (via

automatic parallelization) and use knowledge to simplify software development.

Other tools within the system aid the user in improving the performance,

efficiency, and reliability of parallel programs.

PARSE enables the user to express problem solutions in descriptive,

sequential procedural,' or parallel procedural form, thus allowing the user to

choose the most appropriate abstraction for the problem under consideration.

This flexibility is a distinguishing feature of PARSE.

Many of the individual components of PARSE have been previously investi

gated in prototype form. XPC (explicitly parallel C) follows the concepts and

structure of Parallel C [KuS85], a language designed to efficiently express both

SIMD- and MIMD-style parallel control. XPAT (explicitly parallel algorithm

analysis tool), a tool for design and implementation of parallel programs, is a

modification and extension of a tool for analysis of distributed scheduling algo

rithms — DSSAP (distributed scheduling simulation and analysis package)

[Cas86], which is based on a GFA (communicating finite automata) model

- 6 -

[CaK86a].

RC (refined C) is sequential language, based on ANSI C, which allows the

programmer to explicitly state data access rights, potentially resulting in per

fect flow analysis for parallelization. Using recent advances in automatic paral

lelization technology, RC compilers have been developed to convert sequential

procedural code into safe and efficient parallel procedural code for large and

small grain shared memory MIMD machines [DiK86]; the RC compiler in

PARSE represents an extension of this technology to non-shared memory

machines. This technology will also be employed to produce CR (C Reflex), a

tool which will accept RC code, analyze it, and help the user to modify it for

enhanced parallelism. CP (C Prefine), which provides for automatic paralleli

zation of conventional C code by converting it into RC code, has been proto

typed using a simplified flow analysis technique.

In addition to providing programmers with support for procedural program

ming, PARSE provides KLBLP (knowledge-based logic programming). KBLP is

a logic programming system which associates efficient procedural implementa

tions with logic descriptions and matches user logic programs to these descrip

tions to obtain the implementations. The KBLP environment also combines

three complementary technologies to help programmers write logic programs:

logic programming, object-oriented design, and program transformation. First,

the logic programming language PROLOG [War77] is augmented by the con

cepts of objects and classes [Zan84, She86]. Second, programmers are provided

with a rich collection of generic objects and generic procedures, and the reusa

bility of these modules is in many ways automated [She86]. Third, in contrast

to most existing approaches that explore the parallelism in logic programs

through syntactic transformation (e.g., [TuM86, LiW86]), KBLP transforms a

descriptive logic program semantically to its procedural form so that more

- 7 -

efficient parallel execution can be obtained.

A discussion of the various user interfaces to PARSE, and scenarios of their

uses, appear in the following section. Later sections describe the principles

underlying the individual components of the PARSE system.

3. User Interfaces

In this section, the interrelationships among the components of PARSE are

presented through a description of the system from the user’s point of view and

several brief scenarios of its operation.

Figure 1 is a graph illustrating PARSE in which the nodes represent the

forms taken in transforming a problem from its initial specification into a paral

lel implementation of its solution. The arcs, therefore, represent transforma

tions between forms, whether the transformation is performed automatically,

semi-automatically, or manually. To simplify the graph, we have shown

PARSE’s interrelations as a strict hierarchy, although many cycles are possible

using manual transformations.

The dotted lines shown in Figure 1 partition the logical structure of

PARSE into three categories of abstraction used to express problem solutions:

descriptive, sequential procedural, and parallel procedural. Each of these

categories is now addressed in order.

- 8-

Problem

KBLP
description

Sequential
algorithm

CFA modelC code

KBLP \
compiler XPAT

PREPARRC code

RC\
compiler y

XPC code
KBLP compiler

XPC compiler

Code module (s)

Figure 1. Program Forms in PARSE

3.1. Descriptions

In solving any problem, it is first necessary for the programmer to form an

intuitive, informal understanding of the problem. This description of the prob

lem is the starting point marked as Problem. From this “specification” the user

may manually derive an abstract Sequential algorithm (a procedure using

- 9 -

sequential control flow, possibly with parallelism expressed using data access

rights) or a Parallel algorithm (a procedure using explicitly parallel control con

structs); alternatively, the user may create a precise logic-based description of

the solution to the problem, expressed as KBLP (Knowledge-Based Logic Pro

gram) code.

KBLP can be considered to be a Prolog-like logic-based language, however,

its execution strategy is radically different. Instead of generating the classic

“full-width search” for a solution to the constraints expressed in a logic pro

gram, portions of the logic program are matched to pre-defined pairs of logic

specifications and efficient procedural solutions. These procedures may be

implemented either as sequential-control code (RC) to be optimized and paral

lelized by the RC compiler or as parallel-control code (XPC code).

3.2. Sequential Procedures

If an abstract Sequential algorithm has been designed, it may be written as

either C code or RC code. C is a well-known systems programming language

which has gained wide acceptance in many application domains. Unfortunately,

C is an extremely difficult language to analyze for automatic parallelization

(due to extensive use of pointers, recursion, and separate compilation). This

expensive (yet imperfect) analysis is performed by CP. However, the result is

RC code.'

RC code is sequentially control-structured code, but is annotated with data

access information which enables rapid, accurate, and precise parallelization

analysis. The annotations used are similar to those encouraged for software

engineering reasons: writing, maintaining, and improving RC code is easy for a

C programmer.

Further, because these data access rights clearly imply which operations

may be executed in parallel, RC code may be viewed as a “fail-safe” notation

for expressing parallel computations — a technique which does not allow the

programmer to write code which would result in a race or deadlock. Many

“parallel algorithms” are quite naturally expressed using data access con

straints within “sequential” RC code.

The RC compiler generates efficient (parallel) XPC code. CR accepts RC

code, analyzes it, and helps the user to modify it for enhanced parallelism.

3.3. Parallel Procedures

For solutions to problems which consist of abstract Parallel algorithms,

XPC code may be used to directly express parallel programs. Thus, the arc in

Figure 1 originating at Parallel algorithm and terminating at XPC code

represents a manual transformation. In order to provide the user with informa

tion useful in refining and tuning parallel algorithms, an alternative path is pro

vided from Parallel algorithm to XPC code. The forth of the specification

required for this path is based on the formal CFA model. An automated

analysis tool — XPAT, represented by the self-loop edge on CFA model,

operates on a CFA description of the algorithm to provide the user with infor

mation regarding the performance and efficiency characteristics of the solution.

(Performance characteristics are those which are related to the objectives of the

algorithm(s); efficiency is objective-independent.) In order to provide this

analysis, certain additional information must be provided to XPAT which

describes minimal system dependent characteristics and algorithm performance

objectives. More information regarding the function and structure of XPAT is

in section 5. The edge from CFA model to XPC code is implemented by an

automatic transformation tool — PREPAR (prepare for parallel compilation),

- 10 -

-11 -

which converts the algorithm specifications from a CFA model into XPG code.

Finally, the transformation of code from RC code or KBLP description to

XPC Code is accomplished through automatic translation. These transforma

tions have been previously described (i.e. knowledge-based compilation of KBLP

code and RC compiler).

Table 1 summarizes the above section, giving brief descriptions of the

problem/program representations used within PARSE (the nodes of Figure 1)

and the software tools which constitute PARSE.

Representation Description

Problem unrestricted computational problem

KBLP description a problem or solution specified as a knowledge-based logic
program

Sequential algorithm unrestricted algorithm using sequential control, possibly parallel
in terms of data access constraints

Parallel algorithm unrestricted algorithm using parallel control

CFA model Specification of a communicating finite automata model

C code code written in the C programming language

RC code code written in refined C; C extended to permit annotation
with explicit data access rights

XPC code code written in explicitly parallel C; C extended to permit
exploit parallel control and data layout

Code module a module of target-machine object code

Software Tool Description

KBLP compiler transforms logic programs to match the logic descriptions of
reusable procedures, compiling the program into efficient RC or
XPC code consisting mostly of procedure ireuses

CP C prefine (preprocessor for refinement); uses sophisticated
analysis techniques to obtain data access information from C
code, resulting in RC code directly stating the data access
rights

RC compiler uses both loop and irregular code parallelization techniques to
convert RC code into efficient (parallel) XPC code

CR C reflex (refined language expert); analyzes RC code and helps
the programmer to improve it

XPAT explicitly parallel algorithm analysis tool; used to design and
debug parallel algorithms expressed using CFA models

PREPAR prepare for parallel compilation; converts a CFA model into an
XPC program

XPC compiler converts XPC code into Code modules

Table 1. Representations & Tools within PARSE.

- 13 -

3.4. Scenarios

The following scenarios illustrate some of the ways in which programs may

be developed using the PARSE tools:
• Applications involving complex basic operations. Many algorithms (pro

cedures) in support of applications like image understanding have been
developed, further, the conceptual tasks are easily abstracted at a very
high level. One might naturally choose, therefore, to specify an image
understanding system using the logic notation of KBLP. KBLP would rear
range and match the logic structure to the logic descriptions associated
with support algorithms, and would therefore generate very efficient code
consisting mostly of invocations of these procedures. If RC coded pro
cedures were used, the RC compiler would then convert them into XPC
code. Finally, the XPC compiler would generate efficient executable code.

• Parallelizing an existing application. Many useful programs have been writ
ten in C, including virtually all software designed to run under UNIX and
the tools of PARSE itself (that have been developed thus far). To develop
an efficient parallel version of a C program, the programmer would first use
CP to convert the program into RC code. More than likely, ambiguities
would surface in the analysis of the C code. The programmer would then
use CR to help him improve the RC code by removing ambiguities that
would have caused loss of useful parallelism. The RC compiler, followed by
the XPC compiler, would then convert the RC code into efficient executable
code.

• Expressing parallelism using data access specifications. Most speedup-
oriented “parallel” algorithms are easily expressed using sequential control
constructs and data access right specifications in RC. Unlike other expres
sions of parallelism, however, the RC compiler insures that parallelism
expressed in this way cannot result in a race or deadlock. Perhaps more
importantly, it can be debugged using conventional techniques (such as
insertion of debugging output statements) and debugging one scheduling of
the program insures that all schedulings are debugged. It can also be
improved using CR. The RC compiler, followed by the XPC compiler,
would compile the RC code into efficient executable code.

® Expressing, parallelism using parallel control. Algorithms which embody
explicitly parallel control (particularly those involving real time or using
non-deterministic synchronization/communication structures) may be
expressed using either XPC Code or a CFA model. For critical code, a CFA
model would be used, so that XPAT could predict performance and aid in
design improvement and debugging; the final version of the CFA model
would then be converted into XPC code by PREPAR. Less critical code
could be written in XPC directly. The XPC code would be compiled into
efficient executable code by the XPC compiler.

- 14 -

4. Knowledge Use within PARSE

As has been indicated, PARSE is not limited to a single machine or appli

cation domain. To achieve this generality, the types of knowledge which are

used by the tools within PARSE have been abstracted; therefore, this

knowledge base can be isolated from, and shared among, the tools. PARSE’s

knowledge base incorporates knowledge of the following broad types:
• User input. This knowledge is in the form of interactive responses to

queries for additional information. It is typically user-provided knowledge
to be used only in processing the program currently Under development.

• Application dependent knowledge. This is knowledge specific to a problem
or application domain (e.g. circuit simulation) which can be used to aid in
selection of an implementation or to improve the performance of a program
at execution time. 5 :

• Generic functions. These are abstracted procedures that can be instan
tiated to operate on any objects of a particular class (e.g. graph algo
rithms).

• Automatic parallelization. This knowledge consists of information and pro
cedures which allow problems and their high-level specifications to be
parallelized or a parallel execution structure to be modified.

• Program structure. This is knowledge of program flow structure analysis
techniques and information, which are needed in support of complex pro
gram restructuring (mostly in support of automatic parallelization).

• Target machine. This knowledge represents the machine characteristics
which are significant in making implementation decisions (e.g. the max
imum number of processors, reconfigurability, etc.).

Classifying knowledge along these lines, Table 2 shows which kinds of

knowledge are applied by each automatic or semi-automatic transformation

tool. Manual transformations, which correspond to the other arcs from Figure

1, are not described in the table.

Transformation Types of Knowledge Used in Transformation3

From t* To
(Name of Tool)

User
Input

Applic.
Depend.

Generic
Func.

Auto
Par.

Prog.
Struct.

Target
Mach.

KBLP —*• RC
(KBLP compiler) ,

— Yes Yes — Some —

KBLP -r* XPC
(KBLP compiler)

Yes Yes Some Some

C —► RC
(GP)

Some — . --- .. — Yes

RC —*• RC

(OR)
Yes — ■ — Yes Yes Yes

RC —*• XPC
(RC compiler)

— ~ : Yes Yes Yes

CFA CFA -
(XPAT)

Yes Yes — — Some Yes

CFA —► XPC
(PREPAR)

—. — — — Some Some

XPC —►Code
(XPC compiler)

' --- . —, .. . Some Some Yes

Runtime Config.
of Code modules
(operating system)

Some Some Yes

Table 2. Use of Knowledge Types in PARSE.

3 Refer to the text for an explanation of the abbreviations! used for knowledge types
appearing in this table. An entry marked “—” means that this type of knowledge is not
employed, “Yes” means that this type of knowledge is used, and “Some” means that
this type of knowledge may be applied only under special circumstances or that its use
is otherwise limited.

-16 -

5. XPC Language & Compiler

Although XPC and its compiler are both relatively simple, the XPC com

piler is the one tool always used in program development under PARSE and

every program is eventually expressed as XPC code. There are four primary

reasons for XPC’s importance as the basic support for explicitly parallel control

programming:
• Nature of an application problem. The simulation of the interaction of a

large number of loosely-coupled, non-homogeneous, communicating
processes may be most naturally specified in an explicitly parallel style.
For example, a model of decision-making in an economic system is easier to;
express using explicitly parallel control.

• Nature of an application’s runtime environment., Cjurrent technology
makes other programming techniques very natural for speedup-oriented
computation-bounded tasks, but not for real-time constrained ta.sks. For
example, the control of a real-time distributed process in a FMS (flexible
manufacturing system) is most naturally expressed using explicit control
parallelism.

• Need to tune for performance. The refined language approach results in
very reliable parallelism recognition. Hence, it permits specification of
parallel algorithms by specification of data access rights (rather than by
parallel control constructs); but such a specification merely suggests a
parallel form — the compiler determines the resulting parallelism. Like
any other transformation mechanism, however, there are always some
attributes of the problem being solved which are not considered by that
mechanism, sometimes resulting in less efficient parallel code than a pro
grammer might devise. To achieve this extra performance edge, the pro
grammer must have access to the explicitly-parallel representation of the
program; the programer must be given the ability to Specify the explicitly-
parallel control structure which will be used.

• To have a uniform interface. Since PARSE is to be targeted to a wide
class of machines, it is useful to provide a straightforward parallel control
language to be used by the higher levels of PARSE in much the same way
that a conventional compiler uses assembly language. By generating XPC
code, all tools except the XPC compiler are insulated from machine-
dependent quirks in the expression of parallel control constructs.

The last two reasons for XPC’s importance are, in a very real sense, con

tradictory: improving XPC’s ability to be used for tuning performance to a par

ticular machine generally degrades the portability of the language. For the

class of machines described earlier, the main conflict is between support of run

- 17 -

time hardware reconfigurability and portability across various target architec

tures. These are critical requirements for parallel programming languages

[ScS86].

To support reconfiguration, XPC code must be able to specify operating

system functions which support selection of virtual machine sizes (numbers of

processors), allocation of subtasks to processors within a virtual machine, and

selection of the mode of parallelism for each virtual machine. For example, in a

hypercube machine, operating system calls are provided which allow the user to

dedicate specific sub-cubes (virtual machines) to particular sub-tasks within a

problem. Partitioning of a system into virtual machines is also allowed in

PASM [SiS87], however, with the additional capability to select either MIMD or

SIMD mode for each virtual machine. In order to optimize performance when

the user either has knowledge of intertask communication patterns or the

operating system is capable of dynamic remapping of tasks due to observed pat

terns, XPC must be able to specify that re-assignment of processes to different

nodes within a virtual machine take place. Such constructs are not easily

implemented on all machines.

Portability of XPC code is closely related to the implicit synchronization

and communication within an explicitly parallel control construct, which derives

from the underlying virtual machine configuration. For example, a SIMD-

oriented definition of a doall construct might specify that all fetches must

occur before the store in each statement within the body. This definition would

often result in excessive synchronization operations in MXMDs, since, although

few bodies would actually require such synchronization, the compiler has no

easy way of determining when they are unneeded. Hence, such a definition is

not very portable. A more portable definition of doall would state that the

order of operations across processes within the body is unspecified and not

- 18 -

necessarily consistant from one run to the next. (This definition would occa

sionally force the SIMD user to write a sequence of several doalls instead of a

single SIMD-style doall.)

XPC will provide sufficiently rich explicit parallelism constructs so that

most parallelism constructs supported by any given machine can be expressed in

XPC code. In this sense, the language will be portable. However, in support

these machine features, an individual program may use a construct which is not

naturally supported on all of the target machines: reusing an earlier example,

the ability to select SIMD mode for a virtual machine is not directly supported

on a hypercube machine. The design of XPC endeavors to achieve portability

of individual programs written in XPC by:
• enabling the XPC compiler to generate code for those “unnatural” con

structs, however inefficient it may be (for example, simulating SIMD syn
chronization on a MIMD) and

• wherever possible, using language constructs that express parallelism in the
most portable way (as in the doall example).

6. XPAT & PREP AH

As stated in the previous section, a,n explicitly parallel programming inter

face is provided in PARSE for a number of reasons. Among these is the direct

use of XPC as a programming language. PARSE provides the user with a tool

to aid in using this interface directly - XPAT. In Figure 1, XPAT is a self-loop

on the CFA model specification of a parallel procedural algorithm. XPAT per

mits a user to specify and analyze algorithms which are specified in a form

which can be automatically transformed into XPC code. The analysis provided

has three uses:

(1) To allow the user to debug interprocess communication and synchroniza
tion aspects of asynchronous computations without requiring instrumenta
tion of the target hardware environment.

- 19 -

(2) To support analysis of efficiency of algorithms to permit the user to make
intelligent modifications to improve the use of system resources.

(3) To evaluate the performance of an algorithm in terms of the objective of
the algorithm itself. (This is particularly useful for algorithms which rely
on noisy state information and/or produce results by heuristic methods.)

A further goal of the research surrounding development of XPAT is the for

mal modeling and analysis of parallel algorithms. For this reason, and to

enhance the production of a reliable tool, the design of XPAT should be based

on a formal model of computation. Potential candidates include communicating

finite automata [AhU79, BrZ83, CaK86a], petri-nets [Pet77], and modifications

to petri-nets [Gar85, MaF84, MaL86, Ozs85].

The XPAT environment consists of an integrated environment of source-

and object-level modules, textual processors/transformers, and user interfaces.

The user specifies the semantics of parallel algorithms in terms of finite auto

mata (FA). Communication between cooperating asynchronous processes is

specified by a combination of the definition of the output component of the FA

and graph theory (to specify topology).

A working prototype of XPAT is DSSAP [Cas87j. DSSAP is based on a

modified communicating finite automata model which was originally created to

specify and analyze distributed decision-making algorithms. DSSAP was

developed for use in conducting experimental studies of a number of distributed

algorithms from the class of computations known as distributed task scheduling

based on the objective of load-balancing [CaK86b, CaK86c, ChA82, NiH85]>

This prototype has been used for performance prediction and checking of

semantics in more than 20 scheduling algorithms based on structures ranging

from very simple load re-distribution techniques [Cas86] to bidding [Smi80] and

Bayesian Decision or Team Theory [Lin71, Sta85].

XPAT represents a refinement and extension of the structure and func

tionality of DSSAP. The greatest difference between XPAT and DSSAP is in

- 20 -

the user interface. The goal of DSSAP was to provide experimental results

relating to a particular model of computation; XPAT has a goal much larger in

scope. Therefore, the user interface of DSSAP was given little consideration in

comparison to XPAT. There are two interfaces to consider.

The first involves the specification of algorithm structure and semantics to

XPAT. The second aspect of interface design involves the manner in which

experiment results are reported to the user. The design of XPAT contains facil

ities for (among others) a graphical interface to allow users to glean perfor

mance and efficiency information from a visualization of algorithm behavior in a

global sense.

XPAT also has greater flexibility in allowing users to specify algorithms

with arbitrary objectives. This generality supports applications development in

fields including image analysis and understanding, non-homogeneous control,

and decentralized decision-making applications such as economic modeling and

distributed fault-diagnosis.

The second aspect of the XPAT environment is PREPAR, which

transforms algorithms specified as CFA into a form compatible with the XPC

compiler. This involves some context-sensitive transformation and potentially

some interaction with the user to resolve ambiguities. In addition to the basic

transformational responsibilities of PREPAR, an integration function is also

performed. Since not all parallel algorithms involved in the solution of a prob

lem (at the parallel algorithm level of figure 1) will require refinement with the

aid of XPAT, PREPAR must be able to link the output of PREPAR (which are

XPC modules) to the XPC modules which constutute the remainder of the solu

tion to the application problem.

In summary, the primary attributes of the XPAT environment are:

-21 -

• flexibility with respect to target environments,
• compatibility between user code and target environment,
• capability to isolate cause and effect among many environmental condi

tions,
• reproducibility of observed behavior, and
• ability to produce rudimentary predictions of performance and efficiency.

7. RC Compiler, CR, & CP

In addition to supporting development of code using explicitly-parallel con

trol, PARSE provides software tools which perform automatic detection of

parallelism in code written using purely sequential control constructs. Such an

approach offers many benefits:
• the possibility of migrating previously written (sequential) applications to

parallel computers,
• the ability to insure that each program will be race-free and deadlock-free,
• the ability to write and debug new code for parallel algorithms in the same

style used for sequential algorithms (expressing parallelism by data access
rights rather than by explicitly parallel control constructs), and

• the ability to insulate the programmer from most of the machine details
associated with choice of efficient parallel implementation.

However, these benefits are not easily gained.

One problem is that conventional sequential languages incorporate con

structs which “block” efficient, precise, compile-time analysis of programs for

the purpose of automatic parallelization. The other major difficulty is that our

target machines employ non-shared memory MIMD (or SIMD /MIMD

reconfigurable) architectures: automatic parallelization technology for such

machines is very new and bears little resemblance to the vectorization-oriented

automatic parallelization which has long prevailed. PARSE uses the Refined-

Language Methodology [DiK86] to address these problems.

The Refined-Language Methodology is a complete approach to the pro

gramming of highly-parallel computers, based on automatic detection of paral

lelism in code written using sequential control. It includes both a technique for

- 22 -

modifying existing sequential languages to minimize the ambiguity in analysis of

their constructs and a new parallelization technology which is primarily

intended for MIMD-style parallelization.

Within PARSE, the refined-language methodology is applied to create:
• an RC compiler which reliably recognizes parallelism in RC code and gen

erates XPC code embodying that parallelism in a form most appropriate
for the target machine,

• a tool, called CR, which helps the programmer improve the RC
specification of the parallel algorithms, and

• a tool, called CP, which aids in migrating existing C programs to parallel
computers by converting them into RC equivalents.

Refined C differs from ANSI C only in that it extends the ANSI C function pro

totype and declaration syntax to explicitly state data access rights and it incor

porates the concept of “partitioning” a data structure into mutually exclusive

parts.

An RC compiler for PARSE is being designed for non-shared memory

reconfigurable target machines — which are particularly difficult targets for

conventional automatic parallelization techniques. Many of the traditional do-

loop oriented parallelizations result in “pipelined” code, yet that structure is

particularly inefficient on non-shared memory machines [Li85]. For PARSE’s

RG compiler, a new transformation is being developed to provide a far less

synchronization-intensive parallelization of arbitrary (while) loops4. Research

in irregular code parallelization (the parallelization of code containing arbi

trary calls, conditional and looping control constructs) [Fis84, Nic85, SaH86,

K1S87] has also made significant advances toward efficient parallelization for

this class of computers; many of these techniques will be employed within

4 The transformation involves splitting each while loop into three loops, one
sequential and one parallel together inside a loop which may be pipelined. The effect is
to place loop control synchronization within a single processor, hence eliminating the
synchronization cost.

- 23 -

PARSE.

CR will follow much the same principles as Bulldog [Fis84] in locating

ambiguities in parallelization analysis and helping the programmer to resolve

these flaws.

Prototypes of CP have been built, but none of these prototypes perform

sophisticated dependence analysis [A1186, BuC86] to automatically generate par

titionings of data structures. The PARSE version of CP will.

8. Knowledge-based Logic Programming

It has been recognized that a logic programming language such as PRO

LOG can serve as very-high-level specification language [RGP86]. Also, the

specification language can itself be a programming language; consequently, the

problem of efficiency can be simplified. In some cases the specification might

already behave as a tolerably efficient program, although in other cases

transformation may be needed to remove inefficiency. To provide users with the

capability of logic programming, in PARSE we devise the knowledge-based logic

programming environment (KBLP). There are two goals that KBLP is aimed

at:
(1) To facilate logic programming with reusable software modules.
(2) To compile logic programs into efficient procedural parallel code.

KBLP intends to achieve the first goal with the help of generic objects and gen

eric procedures. The rationale behind this is that if we have sufficient generic

objects (and of course their related operations) and generic procedures defined

in a programming environment, it is very likely that a new problem can be

solved with existing objects and procedures. On the other hand, the Second

goal is achieved through semantic logic program compilation, which compiles

logic programs to efficient parallel code with the same semantics.

- 24 -

Briefly, In KBLP, the functionalities of generic procedures are described as

logic programs, but they are implemented as procedural programs: the body of

each procedure is implemented as either XPC or RC code. Similarly, objects

are declared with logic statements. Following the object-oriented design para

digm [B0086], a new problem is defined with the declaration of the objects

involved. These objects are then matched against the existing objects in the

system, and if a match can be found, the reusable operations associated with

the existing objects can be used to solve the new problem. It should be noted

that at the top level the resulting programs are still logic programs, except that

a conjunct in a clause may be implemented with a procedural program. Conse

quently, the resulting program may not be efficient. To get around this, KBLP

applies a set of rewriting rules either to merge pieces of the program or to

reorder the conjuncts such that unnecessary backtracks can be reduced.

If the final result has only one clause, then the (very efficient) XPC imple

mentation of that clause is used. Otherwise, a set of corresponding procedures

which are coded in RC will be retrieved by KBLP and the RC compiler — with

its ability to analyze, restructure, and parallelize across procedure boundaries

— will be used to minimize the inefficiency due to the conjunction of multiple

clauses.

9. Status

The overall structure of PARSE has been defined. The functional require

ments of the components of PARSE have been defined and prototypes of some

components have been constructed.

DSSAP, the forerunner of XPAT, is machine independent and currently

runs under YAX/UN1X. The groundwork for XPC has been completed in the

specification of Parallel C and implementation of a parallel assembler for the

' ■ - 25 - '

PASM [SiS8lj parallel processing system at Purdue University. In addition, all

multiprogramming facilities of Y7 UNIX were implemented for a distributed sys

tem of 68000 microprocessors [CaK84], This combination of efforts provides the

basis for the operating system and language interface prototype for the parallel

procedural components of PARSE.

The preliminary definition of RC appeared in [DiK84] and has already

undergone revisions to reflect the new ANSI C standard: prototypes of RC

compilers have been built for several MIMD computers, including RP3 [Pfi85|.

Several prototype versions of C Prefine have also been constructed. Although

the flow and data dependence analysis techniques used in these tools have been

relatively simple, they have already shown great promise in MIMD-style paral

lelization. For example, a precise technique for tracking pointer-reference

aliases is incorporated, as well as the irregular code parallelization analysis

which characterizes refined-language compilation. These methods often find

substantial parallelism in code which other techniques consider to be essentially

sequential — as in the quicksort example given in the companion paper -— yet

they permit these other parallelization techniques to be Used on constructs for

which they are most appropriate (e.g. vectorizable loops). In addition, a large

number of conventional optimizations are performed. This technology not only

makes sequential procedural programming efficient in parallel execution, it also

forms the basis for logic description transformation and parallelization.

10. Summary

PARSE is designed to help programmers to more easily create high quality

software for reconfigurable, non-shared memory parallel machines. It does this

by conventional software engineering means, but also by aiding in the

parallelism-related problems of partitioning problems for parallel execution,

- 26 -

debugging/preventing deadlock and race conditions (debugging asynchronous

execution in general), and producing efficient, “high performance,” solutions

(also predicting performance of solutions).

Although PARSE is a complete environment, it does not restrict the pro

grammer to a particular programming model or stratedgy.

Descriptive,sequential procedural, and parallel procedural languages are all sup

ported and integrated into PARSE — as are tools which provide debugging and

analysis facilities.

The primary target for the first implementation of PARSE is PASM. How

ever, a hypercube version and other implementations are planned; the abstrac

tion of a knowledge-based system architecture makes PARSE more amenable to

such changes.

Acknowledgments

The authors gratefully acknowledge many useful discussions with Thomas

Schwederski, David Klappholz, and Ken Stein.

References

[AMJ79] A.V. Aho, JJ). Ullman, M. Yannakakis, “Modeling Communication Protocols by Auto
mata,” 80th, Symp. Foundations of Computer Science, Oct. 1979, pp. 267-273.

[A1186] F. Allen, “The Parallel Translator Project,” NASA / ICASE Parallel Languages and
Environments Workshop, Nov. 1986.

[AJB86] R. Allen, D. Baumgartner, K. Kennedy, A. Porterfield, “PTOOL: A Semi-Automatic
Parallel Programming Assistant,” 1986 Int’l Conf. Parallel Processing, Aug. 1986, pp.
164-170.

[B0086] G. Booch, “Object-oriented Development,” IEEE Trans. Software Engineering, Feb.
1986.

[BrZ83] D. Brand, P. Zafiropulo, “On Communicating Finite-State Machines,” JACM, Vol. 30,
No. 2, Apr. 1983, pp. 323-342.

[BuC86] M. Burke, R. Cytron, “Interprocedural Dependence Analysis and Parallelization,”

SIGPLAN Symp. Compiler Construction, 1986, pp. 162-175.
[CaK84] T.L. Casavant, J.G. Kuhl, “Design of a Loosely-Coupled Distributed Multiprocessing

Network,” 1984 *1 Conf. Parallel Processing,Aug. 1984, pp. 42-45.
[Gas86] T.L. Casavant, “Scheduling in Distributed Computing Systems,” Ph.p. Thesis, Univer

sity of Iowa, Iowa City, IA, May 1986.
[CaK86a] T.L. Casavant, J.G. Kuhl, “A Formal Model of Distributed Decision-Making and Its

Application to Distributed Load Balancing,” 6th Inti Conf. Distributed Computing
Systems, May 1986, pp. 232-239.

[CaK86b] T.L. Casavant, J.G. Kuhl, “An Examination of the Effects! of Global Knowledge on
Scheduling Algorithms for Distributed Computing Systems,” Technical Report TR-EE
86-34, School of Electrical Engineering, Purdue University, 1986.

[CaK86c] T.L. Casavant, J.G. Kuhl, “Effects of Response and Stability oh Scheduling in Distri
buted Computing Systems,” Techriical Report, TR-EE 86-39, School of Electrical
Engineering, Purdue University, 1986.

[Cas87] T.L. Casavant, “DSSAP - An Automated Design Aid for Algorithms and Software
Development in Distributed Computing Systems,” 2nd International Conference on
Supercomputing, 1987 (to appear).

[ChA82] T.C.K. Chou, JA. Abraham, “Load Balancing in Distributed Systems,” JiSEZ? Tran
sactions on Software Engineering, Vol. SE-8, No. 4, Jul. 1982, pp. 401-412.

[Che84] T.E. Cheatham, “Program Reusability Through Program Transformation,” IEEE
Trans. Software Engineering, Sep. 1984.

[C0A86] R.P. Cook, R.J. Auletta, “StarLite, A Visual Simulation Package for Software Proto
typing,” SIGPLAN (86 Symp. Language Interfaces and Programming Environments,
1986, pp. 102-110.

[DeS86] N. Delisle, M. Schwartz, “A Programming Environmentfor CSP,” SIGPLAN *86
Symp. Language Interfaces and Programming Environments, pp. 34-41.

[DiK84] H. Dietz, D. Klappholz, “Refining A Conventional Language for Race-free
Specification of Parallel Algorithms,” 1984 Conf. Parallel Processing, August,

• 1985.

[DiK86] H. Dietz, D. Klappholz, “Refined FORTRAN: Another Sequential Language for Paral
lel Programming,” 1986 Inti Conf. Parallel Processing, Aug. 1986, pp. 184-191.

[Fis84] JA. Fisher, “The VLIW Machine: A Multiprocessor for Compiling Scientific Code,”
IEEE Computer, Jul. 1984, pp. 45-53.

[Gar85] K. Garg, “An Approach to Performance Specification of Communication Protocols
Using Timed Petri Nets,” IEEE Transactions on Software Engineering, Vol. SE-11,
No. 10, Oct. 1985, pp. 1216-1224.

[K1S87] D. Klappholz, K. Stein, H. Park, H. Dietz, “Detecting Potential Parallel Execution in
Sequential Code,” 1987 Int 1 Conf. Parallel Processing, Aug. 1987, (submitted).

[KuS85] J.T. Kuehn, H.J. Siegel, “Extensions to the C Programming Language for
SIMD/MIMD Parallelism,” 1985 Inti Conf. Parallel Processing, Aug. 1985, pp. 232-
235.

[LiW86] G.J. Li, B.W. Wah, “How Good are Parallel and Ordered Depth-First Search?,” 1986
Inti Conf. Parallel Processing, 1986, pp. 992-999.

[Li85] Z. Li, “A Technique for Reducing Data Synchronization in Multiprocessed Loops,” MS

- 28 -

Thesis, University of Illinois at Urbana-Champaign, May 1985.
[Lin7l] B.W. Lindgren, Elements of Decision Theory, MacMillan, New York, 1971.
[MaF84] B.N. Malm, G.M. Flachs, “Algorithm Modeling on Distributed Systems,”Proceedings

4th International Conference on Distributed Computing Systems, May 1984, pp. 62-68.
|MaL86] D.C Marinescu, C. Lin, “Preliminary results on multiprocessor modeling and analysis

using stochastic Petri nets,” 24th Conf. Communication, Control and Computing, Oct.
1986.

[MaW86] K. Marzullo, D. Wiebe, “Jasmine: A Software System Modelling Facility,” SIGPLAN
‘86 Symp. Language Interfaces and Programming Environments, 1986, pp. 121-131.

[Nic85] A. Nicolau, “Uniform Parallelism Exploitation in Ordinary Programs,” 1985 Inti
Conf. Parallel Processing, Aug. 1985, pp. 614-618.

[NiH85] L.M. Ni, K. Hwang, “Optimal Load Balancing in a Multiple Processor System with
Many Job Classes,” IEEE Transactions on Software Engineering, Vol. SE-11, No. 5,
May 1985, pp. 491-496.

[Ozs85] M.T. Ozsu, “Modeling and Analysis of Distributed Database Concurrency Control
Algorithms Using an Extended Petri Net Formalism,” IEEE Transactions on Software
Engineering, Vol. SE-11, No. 10, Oct. 1985, pp. 1225-1239.

[Pet77] J.L. Peterson, “Petri Nets,” Computing Surveys, Vol. 9, Sep. 1977, pp. 223-252.
[Pfi85] G.F. Pfister et al, “The IBM Research Parallel Processor Prototype (RP3): Introduc

tion and Architecture,” Proceedings 1985 International Conference on Parallel Process
ing, Aug. 1985, pp. 764-771.

|Pra85] T.W. Pratt, “Pisces: An Environment for Parallel Scientific Computation,” Software,
Vol. 2, No. 4, Jul. 1985, pp. 7-20.

[SaH86] V. Sarkar, J. Hennessy, “Compile-Time Partitioning and Scheduling of Parallel Pro
grams,” SIGPLAN Symp. Compiler Construetion, 1986/pp. 17-26.

[ScS86] T. Schwederski, H.J. Siegel, “Adaptable software for supercomputers,” Computer, Vol.
19, Feb. 1986, pp. 40-48.

[SeR85] Z. Segall, L. Rudolph, “PIE: A Programming and Instrumentation Environment for
Parallel Processing,” Software, Vol. 2, No. 6, Nov. 1985, pp. 22-37.

[She86] P.C-Y. Sheu, Query Processing and Communication Control in Object Bases and Distri
buted Object Bases, Ph.D, Dissertation, University of California, Berkeley, Jun. 1986.

[SiS8l] H.J. Siegel et al, “PASM: A Partitionable SIMD/MIMD System for Image Processing
and Pattern Recognition,” IEEE Trans. Computers, Vol. C-30, No. 12, Dec. 1981, pp.
934-947.

[SiS87] H.J. Siegel, T. Schwederski, J.T. Kuehn, N.J. Davis IV, “An Overview of the PASM
Parallel Processing System,” Tutorial: Computer Architecture, IEEE Computer Society
Press, Washington DC, 1986, pp. 387-407.

[SmK85] D. Smith, G. Kotik, S. Westfold, “Research on Knowledge-based Software Engineering
Environments at Kestrel Institute,” IEEE Trans. So ftware Engineering, Nov. 1985.

[Smi80] R.G. Smith, “The Contract Net Protocol: High-Level Communication and Control in
a Distributed Problem Solver,” IEEE Trans. Computers, Vol. C-29, No. 12, Dec. 1980,
pp. 1104-1113.

[SnS86] L. Snyder, D. Socha, “Poker on the COSMIC Cube: The First Retargetable Parallel
Programming Language and Environment,” 1986 Inti Conf. Parallel Processing, Aug.

- 29 -

1986, pp. 628-635.
[Sta85] JA* Stankovic, “An Application of Bayesian Decision Theory to Decentralized Con

trol of Job Scheduling,” IEEE Trans. Computers, Vol. C-34, No. 2, Feb. 1985, pp.
117-130.

[Swe85] R.E. Sweet, “The Mesa Programming Environment,” SIGPLAN ‘85 Symp. Language
Interfaces and Programming Environments, 1985, pp. 216-229.

[TuM86] Y.W. Tung , D.I. Moldovan, “Detection of AND-Parallelism ih Logic Programming,”
1986 Int’l Conf. Parallel Processing, 1986, pp. 984-991.

[Wap77] D. Warren, L. Pereira , F. Pereira, “Prolog-like Language and Its Implementation
Compared with LISP,” Proceedings Symposium on AI and Programming Languages,
1977.

[Wat81] R.C. Waters, “The Programmer’s Apprentice: A Session with KiBEmacs,” IEEE Trans.
Software Engineering, Nov. 1981.

[Zan84] C. Zaniolo, “Object-oriented Programming in Prolog,” Symp. Logic Programming,
1984.

The PARSE Programming Paradigm — II:
Software Development Support Tools

T.L. Casavant, H.G. Dietz, P.C-Y. Sheu, H.J. Siegel

PASM Parallel Processing Laboratory
School of Electrical Engineering

Purdue University
West Lafayette, IN 47907

January 1987

ABSTRACT

PARSE (parallel software environment) is a software
environment that assists programmers in the development of
parallel programs for reconfigurable non-shared memory comput
ers. The environment supports programming in logic-based
descriptive form, sequential-control procedural form, and parallel-
control procedural form. Such a rich choice of language interfaces
provides a programmer with the capability of selecting the most
appropriate or natural specification of a solution to a problem.
The major components of the PARSE environment are described:
(a) KBLP, which compiles a logic program to procedural parallel
code; (b) CP, which transforms C code into RC code; (c) the RC
compiler, which generates efficient parallel code from sequential
RC code; (d) CR, which analyzes and helps the programmer to
improve RC code; (e) XPC, which provides a convenient notation
for expression of explicitly-parallel control flow and data layout;
(f) XPAT, which provides a programmer with information regard
ing the performance and efficiency characteristics of a parallel pro
gram; and (g) PREPAR, which converts an algorithm modeled for
XPAT into XPC code.

This research was supported in part by the Air Force Office of Scientific Research under grant number
F49620-86-K-0006.

- 2 -

1. Introduction

PARSE (parallel software environment) is a software environment for

reconfigurable non-shared memory parallel machines; it is an integrated collec

tion of language interfaces, debugging find analysis tools, and operating system

which allows users to select from alternative abstraction mechanisms. A choice

of language interfaces provides a programmer with the capability of selecting

the most appropriate or natural specification of a solution to a problem, thus

best utilizing the programmer’s time. High performance, efficiency and reliabil

ity are enhanced primarily through the aid of intelligent tools. These are

automatic or semi-automatic tools used to modify solutions to produce improved

solutions or optimized implementations. Unlike most existing work, which is

either tailored towards single-processor program development systems (e.g.,

Cedar [Tei84], Mesa [Swe85], Jasmine [MaW86], Starlite [C0A86], PDS [Che84],

CHI [SmK85], Programmer’s Apprentice [Wat85]) or tailored towards pure pro

gram parallelization (e.g., PTOOL [A1B86], Poker [SnS86], PIE [SeR85]), PARSE

merges both objectives.

If a problem is best stated in a descriptive form, intentionally leaving out

detailed procedural information, the descriptive language interface will be used.

PARSE provides the potential for efficient execution of such programs by using

the notion of a compiled logic based program which re-uses procedural solutions

to logic specifications. A knowledge-based approach is used to support this

compilation. A sequential procedural language is used to specify problems for

which parallel execution is possible, but where the user can be isolated from the

parallelism. This programming abstraction is supported by automatic and

semi-automatic tools which either transform Or aid in the transformation of

sequential programs into parallel implementations. Where parallel procedural

solutions (explicitly parallel programs) are to: be used, semi-automatic debugging

and analysis tools may be employed to predict performance and to reproduce

sequences of pseudo-random asynchronous events. Thus, the instrumentation of

hardware for debugging is avoided by utilizing PARSE to simulate a virtual

machine in software.

Briefly* PARSE is the integration of the following seven subsystems:
(a) KBLP (knowledge-based logic programming environment), which facili

tates logic programming with software reusability and semantic logic pro
gram transformation.

■(b) RC (refined C) compiler, which Compiles a sequential algorithm written in
RC code into explicitly parallel code (XPC) code. Unlike C code, RC code is
annotated with data access information which enables rapid, nearly perfect,
parallelization analysis.

(c) CR (C Reflex), which analyzes and helps the programmer to improve RC
code., ■■

(d) CP (C Prefine), which transforms a sequential algorithm written in C into
RC code.

(e) XPC (explicitly parallel C), which provides a convenient notation for
expression of explicitly-parallel control flow and data layout.

(f) XPAT (explicitly parallel algorithm analysis tool), which formally
analyzes the performance of a parallel algorithm Specified in terms of a
CFA (communicating finite automata) model.

(g) PREPAR (prepare for parallel Compilation), which Converts a, CFA
modeled algorithm into XPC code.

The purpose of this paper is to describe in detail the aboVe building blocks of

PARSE. This paper is organized as five sections, one discussing each major

Software tool in PARSE. XPC, XPAT & PREPAR, RC compiler & CR, CP,

and KBLP. A companion paper, entitled “The PARSE Programming Paradigm

— I: Software Develdpment Methodology,” describes the interrelationships of

these software tools.

2. XPC

Many problems, such as process control, require parallelism of a form which

is well understood and which may benefit from explicit programming in a pro

cedural language extended to allow specification of parallel control structure.

- 4 -

The definition of XPC provides both for SIMD/MIMD control parallelism

and for explicit statement of data layout across the local memories of the pro

cessors. For example, the following syntax (c.f. Parallel C [KuS85]) specifies

that for each of 100 processors, an array of 10 integers called a should be allo

cated:
parallel [100] int a[10];

Given the above declaration, it is possible to specify the parallel addition of one

to a [5] in all processors by:
++a[*][5];

Using selectors, it is also possible to specify complex SIMD-style processor

enable /disable patterns. The following increments only those a [5]’s in odd-

numbered processors:
selector [100] odds = [n-T{X] { 1 }] ;
+ + a[odds][5] ;

MEMD-style parallel control will be supported using calls for explicit communi

cation and synchronization.

In general, support for explicit parallelism must satisfy several criteria.

Among them are the need to provide power and flexibility to the user of the sys

tem. A second aspect which influences the choices of abstractions, however, is

the capability of the underlying system to efficiently support the abstract

mechanisms chosen. For example, in a very loosely coupled collection of local-

memory processing elements, as in a hypercube multiprocessor, shared variables

may not be efficiently implementable. Despite this, shared variables may be

desirable for applications such as decentralized control, where a shared-variable

“distributed monitor” abstraction [Dij75, Hoa74] is often used. Since our goal is

to support a class of machines, XPC may include primitives for explicit parallel

control over a range of granularities.

- 5 -

A substantial research activity which must be undertaken as a part of this

research then must be the decision as to the set of primitives to provide. The

decision as to which set to provide will be largely determined by the needs of

two groups.
(1) The designers of the language processing system for automatic detection of

parallelism in refined sequential programs. The set chosen for this group
will constitute the virtual machine interface to the language designers and
the implementation of this set is what will allow the integrated software
development environment to be portable to any machine satisfying the pro
perties of the class of machines under study.

(2) The users of the explicitly parallel programming environment. In addition
to the direct needs for supporting explicit parallelism for this group, an eye
must be kept toward the design of tools for the support of this environ
ment. This constraint, however, is not very stringent since prior modeling
work has shown the ability to construct simulation tools and analysis pack
ages for working with some of the least structured primitives.

In providing these primitives, a fixed set of areas must be addressed. These

areas, along with some enumeration of sub-issues, are:
(1) Data layout specification.
(2) Process creation.

• Parallelism in control flow. (e.g. spawn, fork)
• Parallelism in data access.

(3) Inter-process communication (IPC)
• Blocking /Non-blocking.
• Shared variable vs. Message passing abstractions.
• Remote procedure call support.
• Support for transaction abstraction.

(4) Process synchronization/termination.
• Wait/signal.
• Generalized message passing.

(5) Machine reconfiguration
• Partition size specification.
• PE computation mode selection (e.g. MIMD vs. SIMD).

The decision as to which primitives to use for a particular configuration

should be embodied in two different places depending on the mode of parallel

programming desired by the user. In the case of explicit parallelism (XPC

interface), the user will employ XPAT to provide preliminary performance and

efficiency characteristics about the application. This information may then be

used to make decisions regarding the ultimate partitioning of the problem, and

the choice of IPC mechanisms and synchronization techniques.

3. XPAT&PREPAR

A consequence of allowing explicit specification of asynchronous and paral

lel operations is that solutions are more prone to failure due to design flaws

(software faults). Parallel code generated from sequential specifications of

operation (as provided by the RC interface) can be guaranteed free of such

phenomenon as races or deadlock during execution. Much can be done in the

way of providing safer explicit mechanisms for parallel access to shared objects

(e.g. monitors); guarantees of safety; however, are practically impossible. In

addition to being extremely costly, instrumentation at the hardware level to

support debugging may be impossible without altering actual behavior of the

production system. Hence, software development must be supported by means

of automated tools for verification of designs which allow controlled experimen

tation and modification of software for an arbitrary target environment. In

addition to debugging capability, it is very useful to do performance evaluation

before implementation in the target environment.

Within PARSE, XPAT is the tool to be used in software development

employing prototyping as a mechanism for refining specifications. These proto

types are expressed as CFA models, which can be converted into XPC code

through use of PREPAR. The analysis provided has three uses:
(1) To allow the user to debug interprocess communication and synchroniza

tion aspects of asynchronous computations without requiring instrumenta
tion of the target hardware environment.

(2) To support analysis of efficiency of algorithms to permit the user to make
intelligent modifications to improve the use of system resources.

(3) To evaluate the performance of an algorithm in terms of the objective of
the algorithm itself. (This is particularly useful for algorithms which rely
on noisy state information and/or produce results by heuristic methods.)

A further goal of the research surrounding development of XPAT is the for

mal modeling and analysis of parallel algorithms. For this reason, and to insure

the production of a reliable tool, the design of XPAT should be based on a for

mal model of computation. Potential candidates include GFA [Aho79, BrZ83,

CaK86a], petri-nets [Pet77], and modifications to petri-nets [Gar85, MaF84,

MaL86, Ozs85].

3.1. DSSAP: an XPAT Prototype

A working prototype of XPAT is DSSAP [Gas87]. This tool was developed

for use in conducting experimental studies of a number of distributed algorithms

from the class of computations known as distributed task scheduling based on

the objective of load-balancing [CaK86a,b,c, ChA82, NiH85]. DSSAP has been

used for performance prediction and checking of semantics in more than 20

scheduling algorithms based on structures ranging from very simple load distri

bution techniques [Cas86] to bidding [Smi80] and Bayesian Decision or Team

Theory [Lin71, Sta85]. DSSAP is based on a modified GFA model which was

originally created to specify and analyze distributed decision-making algorithms.

As a concrete example of the nature of XPAT, a brief description of DSSAP is

presented here. This section will only provide a description of the tool and its

structure; details of the model appear in [CaK86a].

The basic structure of this tool is that of a package of source-level routines

and inputs to executable programs as depicted in Figure I.

- 7 -

Workload
Description

Simulation
Module

Results

Figure 1. High-level Structure of DSSAP

Performance
Objective

Statistics
Generation Info,

Structure
Specification

FA
DefinitionEngine

The user’s algorithm is described in the form of a CFA (FA Definition in

Figure l). The notation used to specify the elements of the CFA is that of a set

of reserved Structure and procedure names in the C programming language.

This component of DSSAP is all that is required for a user to specify the struc

ture and semantics of a distributed scheduling algorithm. In order to accom

plish its analysis, however, DSSAP requires additional information.

The functional goal of the algorithm is also specified in C in Performance

Objective. This specification is necessary in order for DSSAP to report

information to the user regarding the behavior of the algorithm in terms which

are relevant to the application. The FA Engine constitutes a static component

of the system used to drive the state transitions in the CFA and to simulate

asynchronous events under the conditions of a user specified experiment. User

modification of FA engine, is not required under normal circumstances.

The characteristics of an experiment are described in Workload Description

and Statistics Generation Information. The workload description consists of a

specification, for each asynchronous component of the algorithm, of a script of

events to occur, or of a specification of simulated dynamic behavior. The latter

is accomplished by providing the mean and variance for one of a collection of

well-known probability distributions. Statistics generation information is simply

a dynamic input to the executable simulation module which directs the Perfor

mance Objective module as to the format and quantity of output to provide

concerning the results of the experiment to be conducted. The final component

of DSSAP is a specification of the interconnection topology of the communicat

ing entities in the algorithm. This is represented in Figure 1 as Structure

Specification and is in the form of a dynamically-TSupplied adjacency list.

3.2. XPAT

XPAT represents an extension of structure and function of DSSAP. XPAT

consists of an integrated environment of source- and object-level modules, tex

tual processors/transformers, and user interfaces. The three goals in the design

of XPAT are: 1) to extend the functional attributes of DSSAP, 2) generalize

the user-interface related aspects of DSSAP, and 3) to provide greater flexibility

in allowing users to specify algorithms with arbitrary performance objectives.

Examples of the generality sought include image analysis and understanding,

non-homogeneous control, and decentralized decision-making applications such

-10 - .

as economic modeling and distributed fault-diagnosis.

The most significant enhancement of XPAT over DSSAP is in the user

interface. While the primary goal of DSSAP was to provide experimental

results relating to a particular model of computation (i.e. CFA), XPAT has a

goal much larger in scope. There are two interfaces to consider. The first

involves the specification of algorithm structure and semantics to XPAT. The

main change to this interface involves removing the use of reserved names for

specifying CFA components. In order to facilitate this removal, a textual

preprocessor is invoked to transform the user-provided CFA model specification

of the algorithm to a compilable form. The existence of this preprocessor will

be transparent to the user.

The second aspect of interface design involves the manner in which experi

ment results are reported to the user. The format employed in DSSAP con

sisted of a tabular listing of evaluations of the user-supplied performance objec

tive function at specified points in time. There was no explicit restriction to

this format, but the DSSAP environment did not easily facilitate any other form

of output. Therefore, the design of XPAT contains facilities for (among others)

a graphical interface to allow users to glean performance and efficiency informa

tion from a visualization of algorithm behavior in a global sense.

The other distinguishing features of XPAT (i.e. extended functionality and

greater flexibility in specifying algorithm objectives) are accomplished in a

number of ways. First, we expand the functionality of the Workload Descrip

tion component to allow arbitrary invocation of user-supplied, procedurally-

specified events. Second, the current restrictions on state transitions as

imposed by the notion of algorithm phase as described in [CaK86a] are relaxed

allowing analysis of algorithms with less periodic behavior. Finally, XPAT will

permit easier specification of algorithms with non-homogeneous structure with

-11 -

respect to nodal computation.

3.3. PREPAR

PREPAR transforms algorithms specified as CFA into a form (Standard C)

compatible with the XPC compiler. This involves some context-sensitive

transformation and potentially some interaction with the user to resolve ambi

guities. In addition to the basic transformational responsibilities of PREPAR,

ah integration function is also performed. Since not all parallel algorithms

involved in the solution of a problem at the highest level may require analysis

by XPAT, PREPAR must be able to link the transformed CFA specifications to

the XPC components which solve the rest of the problem.

4. RC Compiler & CR

PARSE also provides software tools which perform automatic detection of

parallelism in code written using purely sequential control constructs. This

approach offers a way to migrate previously written (sequential) applications to

parallel computers, guarantees freedom from race and deadlock conditions, and

insulates the programmer from most machine dependencies. However,

automatic parallelization of code written in conventional languages is somewhat

unreliable. Ambiguities which block discovery of precise data access rights,

which represent the stores/fetches that a region might make, result in poor

automatic parallelization.

PARSE uses the Refined-Language Methodology to minimize this ambi

guity. The Refined-Language Methodology is a complete approach to the

programming of highly-parallel computers, based on automatic detection of

parallelism in code written using sequential control. It includes both a tech

nique for modifying existing sequential languages to minimize the ambiguity in

-12 -

analysis of their constructs and a new parallelization technology which is pri

marily intended for MIMD-style parallelization.

Within PARSE, the refined-language methodology is applied to create a RC

compiler and a tool which helps the programmer improve the RC specification

of his parallel algorithms. (CP, a tool which aids in migrating existing C pro

grams to parallel computers by converting them into RC equivalents, is dis

cussed in Section 5.)

4.1. Refining a Language (C)

The Refined-Language Methodology begins with any conventional high-

level language (HLL) base: C, FORTRAN, PASCAL, LISP, ADA, etc. For

PARSE, we have chosen to use C.

C was chosen primarily because a refined C compiler, generating code for a

shared-memory MIMD, had already been constructed and substantial experience

gained in the process. However, C also is the language in which virtually all the

PARSE tools are written, hence basing the refined language support on C leaves

open the possibility of self-bootstrapping the system to run native on various

parallel computers.

The first step in refining a language is, if the base language incorporates

explicitly-parallel control constructs which do not have sequential-equivalent

semantics, then these constructs are disallowed in the corresponding refined

language (for C, there are no such constructs). Since the resulting language is

purely sequential, it is impossible that a program written in this language would

harbor a race or deadlock condition; further, a flow-analyzing compiler, re

structuring the program into parallel code by using only known correctness-

preserving transformations, cannot possibly introduce a race or deadlock condi

tion. Therefore, the sequential and all such parallelized versions of a program

- 13 -

must produce the same result — debugging any one implies that all are

debugged. Further, since the compiler decides what kind of parallelism to gen

erate and how that structure should be implemented on the target machine, the

applications programmer can be insulated from machine dependent considera

tions (although the compiler for each target machine cannot be).

Unfortunately, the amount of useful parallelism found by a flow-analyzing

compiler examining a program written in such a language is not necessarily all

(or even a large fraction of all) that is present in the program. It is also

difficult to express a parallel algorithm in most such languages. Both of these

difficulties are caused by certain language constructs obscuring the fact that

some operations can be parallelized.

Hence, the second and final step in creating a refined language is to

“refine” the language constructs so that (parallel) data access rights can be

directly stated, providing the compiler with easy access to exactly the informa

tion it needs and providing the programmer with constructs to express the

parallelism envisioned*. These refinements are made to blend-in with the syn

tax and semantics of the base language, and generally constitute only minor

dialectical differences.

In refined ANSI C (RC), the only refinements are:
• a set of extensions to the ANSI C function prototype / declaration syntax

so that permissions for functions to access variables can be directly stated
' and

• the new concept called “partitioning” — a way of independently specifying
access rights to arbitrary mutually-exclusive portions of a data structure
(typically an array).

1 Although the programmer can easily express the parallelism envisioned, the
compiler makes the final decision as to whether that parallelism should be used and, if,
so, by what implementation. Further, a programmer mistake cannot result in a race or
deadlock: such a mistake would simply Cause the compiler to detect less parallelism.

'■ -14-' ^

These -‘minor” refinements permit a parallelizing compiler to find substantial

parallelism in most RC programs without requiring the compiler to perform

extensive inter-module flow-analysis or theorem proving, whereas typical C code

defies even these (very expensive) analysis techniques. By stating data access

rights, the user is also able to write new code for parallel algorithms (and to

debug them) in a familiar style.

A simple, yet dramatic, example of the improvement in reliability of

automatic parallelism recognition is seen in the following refined C (RC) version

of quicksort:2
/* Function prototype */
void sort(* int *a);

/* Function definition */
void
sort(a)
{'

register int i, j, x, w;
register int *below, *mid, *above;

i ■ 0; j = count (a')-1;
x = a[count(a) / 2] ;
do {

while (a[i] < x) + + i;
while (x < a[j]) --j ;
if (i <* j)

w = a[i]; a[i] = a[j]; a[j] « w;
++i; --j;

}
“ _ } while (i <= j) ;

part(a[w], below,(w<=j), mid,(w<i), above);
if (count(below) > 1) sort(below);
if (count(above) >1) sort(above);

2 This code reflects the current definition of RC, which is based on the new ANSI C
definition. The original definition of RC differs somewhat in syntax [DiK85].

- 15 -

The fact that the two recursive calls to sort may be executed in parallel is obvi

ous in this version — because of the parallel structure of the data access rights

defined by the partition Statement — but even theoretically might not be able

to be determined using the best compile-time analysis on the conventional ANSI

C version of the program.

Therefore, defined languages not only provide an efficient means for Obtain

ing parallel execution from software developed as conventional sequential code

—- they also provide a “fail safe,” very machine-independent, way to specify

parallel algorithms: parallel data access rights.

4.2. Compiling RC for Non-Shared Memory

Since a refined language is, in essence j a conventional sequential language,

any of the sophisticated techniques applied to parallelizing “dusty deck” FOR

TRAN [PaK80, A1K82, Fis84, Kuc84, Nic85, Vei85, BuC86, SaH86] can be used

for compiling RC. Although these techniques perform poorly for languages like

G, RC code provides sufficiently precise flow information that these techniques

might work better on RC code than on FORTRAN code.

In fact, information is so readily available that many of the more complex

analysis technologies (such as dependence analysis are typically

unnecessary when operating on RC code. Hence, an RC compiler can use

simpler and faster analysis techniques. In implementing the PARSE RC com

piler, we will not employ compiler technologies which require Symbolic execution

or theorem proving to produce efficient parallel code.

However, many sequential language approaches have, until very recently,

been targeted to vector-oriented computers — a very different kind of paralleli

zation from that needed for non-shared memory partitionable/reconfigurable

machines. To the best of our knowledge, no automatic parallelization technique

-16 -

has ever before been successfully used to generate code targeted to this class of

machines.

For example, in the RC code for quicksort given above, there are no loops

that can be parallelized using vectdrization-type transformation. The paralleli

zation of the two recursive calls, and also the parallelization of the two while

loops, can only be accomplished by attempting to parallelize regions containing

irregular code — code which contains arbitrary control constructs. Whereas

most automatic parallelization techniques are based on local parallelizations of

DO-loop bodies, and often result in synchronization-intensive code (pipelines),

the refined language technique is based on parallelization of irregular code,

making heavy use of global flow information which is directly available in an

RC program.

Recent work in refined language parallelization analysis has resulted in the

development of a formal notation and algorithms for finding and describing

MlMD-style parallelism in irregular code [K1S87]. Further, a generalized tech

nique for low synchronization (non-pipelined) parallelization of bodies of loops

containing control and other dependencies (typically, while loops) has been

developed.

Planned extensions to the refined-language transformation technology for

the RC compiler within PARSE include a modification of the process-packaging

scheme [DiK84] designed to ease communication/reconfiguration costs by selec

tive duplication of computations [Fis84] and more sophisticated management of

local memory/variable allocation [A1186].

Since we are constructing RC and tools to be relatively “generic” with

respect to non-shared memory partitionable/reconfigurable computers, RC will

generate XPC code as its output (rather than a particular machine language).

Choice of XPC constructs will be guided by a machine description accessed from

- 17 -

the PARSE knowledge base.

4.3. CR

While RC provides constructs which the programmer may use to specify

very precise data access rights, the stated rights are only required to be accu

rate, not to be precise. In other words, a valid RC program might grant more

generous access rights to various data than are actually required. In general, it

is impossible for the compiler to determine if the programmer has been excessive

in this respect: if it could determine that, the analysis could be carried-out per

fectly on ordinary C code.

However, the programmer does not care about being precise unless inpreci

sion has some negative effect — typically loss of execution-time speedup by fail

ing to parallelize some region of code. Not all imprecise data access references

have such an effect. Those that do can be identified by observing“paralleliza

tion failures” caused by particular data access constraints.

CR will be an expert in understanding the way in which the RC compiler

parallelizes code for a particular machine. Using this expertise, it interactively

guides the programmer to make small improvements in parallel algorithms

specified as refined-language code: usually by asking the programmer if a piece

of code can be rewritten to remove particular data access constraints associated

with the most costly parallelization failures. These improvements are therefore

based on maximizing useful parallelism for the target machine, with the

pleasant side-effect of making the RC code easier to understand (more precisely

specified) as it becomes more efficient.

For example, again consider the RC quicksort given above, but imagine

that access rights for the recursive calls had been over-generously stated as they

would be in a conventional C quicksort. In other words, the portions of the

■ ■-18 -

array used in both calls ‘would use the same name (the array’s name) and hence

probably would not be distinguishable. The sort routine modifies values within

the array it is passed; hence, the execution of the two recursive calls in parallel

would appear to generate a race condition. To prevent the race, the RC com

piler would generate sequential code for the two calls.

However, CR’s analysis would discover that the expected benefit in paral

lelizing the recursive calls is very high and that only the single constraint

involving the array name caused the failure to parallelize the calls. It would

therefore ask the programmer to be more precise about which: portions of the

array were referenced in each call, indicating that both calls would have to

reference different portions in order to make parallelization safe. Hopefully, the

programmer would answer this question by inserting a partition statement

(part) as seen in the code above.

Not only would this change improve the parallelism, but it increases the

information content of the program — it makes the fact that the calls operate

of different portions of the array more obvious to a human reader as well as to

the RC compiler.

5. CP

In Section 4, we noted that a major benefit of automatic parallelization

technology is that previously written (sequential) applications can be migrated

to parallel computers. The portion of PARSE which supports this is called CP.

While it is possible to perform the transformation directly from a C pro

gram into (parallel) XPC code, this is not how CP operates. Analysis of ordi

nary C code is expensive; it is also often fruitless. If C code were transformed

directly into XPC code, we would find that:

- 19 -

• There would be no way of improving the C code’s parallelization except to
hand-imp rove the XPC version of it — a difficult and error-prone task.

• Every time the C code must be recompiled, even for a minor change, the
entire C program must be analyzed, including any separately-compiled
modules which are used. This implies very long compile times, moderated
only by using incremental interprocedural analysis techniques [C0K86] by
maintaining information hidden from the programmer (which makes it
difficult for the programmer to improve the precision of the data access
constraints). Such compilation delays are unacceptable in a software
development environment.

Instead, GP attempts to transform C code into RC code. This greatly

increases the maintainability of the code as a parallel program, for the reasons

outlined in the previous section.

The transformation of C code into RC code employs the same analysis

techniques used by udusty deck” parallelizers [PaK80, A1K82, Fis84, Kuc84,

Nic85, Vei85, BuC86, SaH86]. Like them, CP may take a long time to complete

the analysis across all modules —- once it has analyzed the program, however, it

simply embeds the pertinent results in the RC code it generates. At this point,

the C version is essentially discarded, and maintenance and further develop

ment act upon the RC version. The RC compiler and CR can both be used to

full advantage on the transformed program.

It is worth noting, however, that the conversion of C code into equivalent

RC code is not even conceptually a simple task. Certain (obscure) uses of C

constructs cannot be mechanically translated using current technology and CP

will merely flag these for the user to translate by hand.

There is also the complex issue of what information should be collected.

Unlike many other interprocedural analysis techniques, the refined language

tools accumulate and operate on summary information which understands the

difference between a region of code which uses a variable s value and later

defines a new value for the variable and a region which defines a new value for

the variable and then uses that value, but never uses the value the variable had

- 20'- ■'

at entry to the region®. Although this distinction is of relatively little use in

performing conventional (sequential) optimization, it is useful in automatic

parallelization.

For example, if we consider each line of code to be a region, then:

one: a = b * c; d = a + e;

two: a = f * g; h = a + i;

specifies that regions one and two can be executed in parallel, despite the fact

that one defines a and two uses it. The parallelization would simply create a

new name (variable) for two’s variable a. The refined language tools would all

understand this even if two were the body of a function in a different file from

region one.

In CP, information is collected iff it is relevant to parallelization. For

example, the above distinction is made by the prototype CP (although it is of

little help in conventional flow analysis). Other information, such as interpro

cedural constant propagation, is not maintained by CP because that informa

tion does not directly aid parallelization (although it helps in conventional

optimization).

The PARSE version of CP will collect the same information, but will

employ dependence analysis techniques [AU86] to construct partitions of arrays

automatically. Prototype CP did not separately track references to portions of

data structures, hence it could not automatically generate a partition along

those lines. 3

3 The first requires that the definition of the variable before the region be computed
before the region is entered, whereas the second region could be executed in parallel
with the code defining the variable before the region. These regions can be parallelized
by the compiler allocating a separate storage location for the variable’s definition
within the second region.

;; - 21 -

0. Knowledge-based Logic Programming

'The automatic programming paradigm assumes that one can write

specifications in a very high level language and then automatically transform

the specifications to code. Unfortunately, due to the conceptual gap between

the specification language and the implementation language, it has been recog

nized that automatic programming is difficult to achieve [RaG86]. To achieve

the goal of automatic programming to a reasonable degree, in PARSE we have

made several decisions: first, use a logic programming language as the high-level

specification language; second, with the help of generic objects and generic pro

cedures, provide programmers with reusable problem solving procedures; third,

perform semantic transformation to transform a logic program to a procedural

parallel program. In what follows we shall briefly discuss these issues:

0.1. Object-based Logic Programming

Although natural language should be the ideal specification format, it has

been realized that this type of problem specification may be incomplete, ambi

guous, and possibly contradictory. We believe that symbolic logic can reconcile

the requirement that the specification language be natural and easy to use with

the advantage of its being machine-intelligible. Furthermore, due to the recent

advances in logic programming languages, the specification language can itself

be a programming language; consequently, the problem of efficiency can be

simplified. In some cases the specification might already behave as a tolerably

efficient program, although in other cases transformation may be needed to

remove inefficiency.

In KBLP, logic programming is coupled with the object-oriented system

design paradigm in order to provide modularity and software reusability. This

coupling is originated from [Zan84j. Briefly, the notion of objects is

implemented by a new infix operator “xvith”, that takes as left operand an

object and as right operand a list of methods (each of which is an arbitrary

PROLOG clause). The class hierarchy is implemented by a special predicate

“isa”. The application of methods to objects is specified by messages using the

infix operator and a message cannot succeed until the following three steps

succeed; 1) unification of the object, 2) unification of the method, and 3) proof
' - ' ■ /

of the method. When a message specifies the passing of a method M to an

object O, the message interpreter first attempts to unify M with the methods

associated with O, and if successful, attempts to prove the method. Otherwise,

it attempts to unify M with the methods associated with the ancestors of O in

the class hierarchy, moving upward until either the unification succeeds or no

ancestor remains.

In KBLP, the above framework is further augmented by the following

predicates:
(1) classfa) is true if a is an object class.
(2) instance_of(a,b) is true if object a is an instance of class 6.
(3) subclass^) f (a,b) is true if class a is a subclass of class b.
(4) attribute (a,b) is true if object class a has b as one of its attributes.
(5) attribute_value(a,b,c) is true if object a has c as the value of its attribute b.

6.2. Solving New Problems with Reusable Software

Studies [BiP85] have shown that reusability is one of the most significant

factors in improving software development productivity and quality.

Knowledge-based systems can be of significant help in increasing reusability. An

intelligent library assistant, for example, can help in retrieving from the library

a module that most closely matches a specification or a segment of specification,

where the module has been efficiently implemented by an expert. Although the

subject of semantic information retrieval has not been completely resolved, we

believe that semantic retrieval can be significantly facilitated with the help of

■' - 23 - • ■

generic objects and generic procedures. The important idea is that if we have

sufficient generic objects (and of course their related operations) and generic

procedures defined in a programming environment, it is very likely that a new

problem can be solved with existing objects and procedures. In KBLP, the

functionalities of generic procedures are described as logic programs, but they

are implemented as procedural programs (written in XPC or RC). Similarly,

objects are declared with logic statements. Following the object-oriented design

paradigm, a new problem is defined with the declaration of the objects involved.

These objects are then matched against the existing objects in the system, and

if a match can be found, the reusable operations associated with the existing

objects can be used to solve the new problem. It should be noted that at the

top level the resulting programs are still logic programs, except that a conjunct

in a clause may be implemented with a procedural program. Consequently, the

resulting program may not be efficient.

The above capability is made possible by automatically relating two enti

ties A and B, where A and B can be an object or a class according to the fol

lowing two possible relationships:
(a) object A is an instance of class B, or
(b) class A is a subclass of class B, where

case (a) holds if
(1) instance_jof(X,A) —*■ f A{X)
(2) f B(Y) instance_of(Y,B), and
(3) /B(X) where instance_o f(X,A)',

case (b) holds if
(1) instance^) f(X, A)—*■ f a(X)
(2) /b(Y) —► instance_of(Y,B), and
(3) fA(X) — /b(4

As an example, consider an airline scheduling and routing application, let

the following formulas hold:

- 24 -

(a) class(flight)
(b) se to f(<X\ ,Xf>,instanc e._o f(X, flight) A attribute_value(X, source, X-p A

attribute_value(X,destination,X2), f)
(c) instance _of(C,f) A attribute_value(C,source ,C r) A

attribute_value (C, destination, C 2) —► instances f(Cecity) A
instance_of(C 2,city)

(d) instance_of(V,set) A instance_of(E,relation) A domain(E,<V,V>) —*>
instance_of(<.V,E>,graph) A attribute _value(<y,E>,vertex_set,V) A
attribute_value(<y,E>,edge_set,E).

By (d) we can obtain
(1) instancesf(<city, f>,graph), since
(2) instancesf(city,set) (a class is a set), and
(3) instancesf(f,relation) A domain(f,<city,city>).

6.3. Problem Description and Semantic Optimization

A very important characteristic of KBLP is that operations are described

with logic programs but implemented with procedural programs. For simplicity,

we shall concentrate on descriptions that are in conjunctive form:

/ 1A...Afn.

For instances, consider the object class graph. Provided that associated to

graph we have a method path(A,B,P), which asserts a path P between two ver

tices A and B in a graph. Also assume that associated to the class graph there

are two other predicates: member(V,P) and length(P,L), where member(V,P) is

true if vertex V is included in path P and length(P,L) asserts that L is the

length of the path P. The following descriptions can be provided by a user:
(1) f1 — g:path(a,b,P) A g:length(P,L) A lesseq(L,r)*.
(2) f2 — g:path(a,b,P) A g:“member(c,P) A g:length(P,L) A lesseq(L,r),
(3) fs — g:path(a,b,P) A g:~member(c,P) A g:"member(d,P) A g:length(P,L) A

lesseq(L,r). 4

4 Here we assume that arithmetic operations are done automatically.

-25 -

In order to translate the above declarative descriptions to procedural

forms, we take the following expert system approach. The expert system uses

the intensional axioms (knowledge) which are represented as rewriting rules

[Bun83] to translate a declarative description / into an equivalent procedural

description f\

The main ideas behind the expert system are goal normalization and goal

reduction. Specifically, a piece of a conjunctive description is normalized if no

predicate in that piece whose variable(s) is dependent upon the variable(s) of

any method in the same piece that searches a large space. A piece of a conjunc

tive description can be reduced if there exists an equivalent predicate for that

piece. The purpose of the intensional processor is to successively apply the

rewriting rules, without changing the semantics of the description, to transform

a description into a more normalized as well as more reduced form.

The success of such a transformation process will depend heavily on the

knowledge of combinatorial problems and specific domains. For instance,

assume that there also exists an algorithm called shortpath(A,B,P,R)> which

asserts a path P, of length less than or equal to R between vertices A and B,

associated with graph in the object base. The above descriptions can be pro

cessed more efficiently if we know that: (a) description (l) can be reduced, and

(b) finding a path which does not pass through a specific vertex is equivalent to

finding a path in a modified graph which excludes the undesirable vertex.

In general, we need three types of knowledge to support the expert system:
(a) Efficient Algorithms for Combinatorial Problems: These algorithms should

be coded as methods and reside in the object base.
(b) Goal Reduction Knowledge: For an algorithm a(T), we should specify the

function achieved by the algorithm. This can be done by asserting the
rewriting rule:

- 26 -

■ where' T- are input variables, To are output variables, and w.(T^), wo(T o),
xv-o(T., To) are formulas specifying the desired relationship between input
and output variables.

(c) Goal Normalization Knowledge: This type of knowledge is represented as
rewriting rules of the form L(t)—+R(s), where both L(t) and R(s) are con
junctions of predicates, to assert the fact that L(t) and R(s) are equivalent.

Thus, for instance, if we have the knowledge:
(4) G:shortpath(A,B,P,R) •*— G:path(A,B,P) A Pdength(L) A lesseq(L,R), and
(5) G’:path(A,B,P) A G:remove(C,G’) <- G:path(A,B,G) A P:~ member (C),

where G:remove(C,G’) is a method introduced to remove a vertex C from a
graph G and the resulting graph is G\

then (1),(2), and (3) can be transformed to :
(6) fg:shortpath(a,b ,r,P).
(7) f2 = G’:path(a,b,P) A g:remove(c,G’) A P:length(L) A leeseq (L,r) (after

applying (5)).
(8) f2”= G’:shortpath(a,b,r,P) A g:remove(c,G’) (after applying (S)).
(9) /5— G’:path(a,b,P) A g:remove(c,G>) A Pdength(L) A lesseq (L,r) A

Pr member(c). (after applying (5)).
(10) f3”= G”:path(a,b,P) A g:remove(c,G’) A G’:remove(d,G”) A P:length(P,L)

A lesseq (L,r) A P:“member(c) (after applying (5)).
(11) f3}”= G”:shortpath(a,b,r,P) A g:remove(c,G’) A G,:rermve(d,G”) (after

applying (4)). 7

7. Conclusion

In this paper we have described the essence of the PARSE programming

environment for reconfigurable non-shared memory parallel computers. We

have described in detail the major building blocks of the environment: XPC,

XPAT & PREPAR, RC compiler & CR, CP, and KBLP. The combination of

these subsystems makes PARSE a flexible programming environment in which a

programmer can develop parallel programs with logic descriptions, sequential

descriptions, or explicitly parallel descriptions of a solution to a problem.

Furthermore, the intelligence embedded in the environment makes the final

parallel programs efficient and reliable.

- 27 -

The overall structure of PARSE has been defined. The functional require

ments of the components of PARSE have been defined and prototypes of some

components have been constructed. The primary target for the first implemen

tation of PARSE is PASM. Future plans include implementation on a hyper-

cube machine among others.

Acknowledgements

The authors gratefully acknowledge many useful discussions with Thomas

Schwederski, David Klappholz, Ken Stein, and Jon Kuhl.

References

[Aho79] A.V. Aho, J.D. Ullman, M. Yannakakis, “Modeling Communication Protocols by Auto
mata,” 20th Symp. Foundations of Computer Science, Oct. 1979, pp. 267-273.

[A1186] F. Allen, “The Parallel Translator Project,” NASA / ICASE Parallel Languages and
Environments Workshop, Nov. 1986.

[A1B86] R. Allen, D. Baumgartner, K. Kennedy, A. Porterfield, “PTOOL: A Semi-Automatic
Parallel Programming Assistant,” 1986 Inti Con/. Parallel Processing, Aug. 1986, pp.
164-170.

[A1K82] J.R. Allen, K. Kennedy, “PFC: A Program to Convert Fortran to Parallel Form,”
Report MASC TR 82-6, Department of Mathematical Sciences, Rice University, Hous
ton, Mar. 1982.

|BiP85] I. Bitar, M.H. Penedo, E.D. Stuckle, “Lessons Learned in Building the TRW software
Productivity System,” Spring COMPCON, 1985.

pBrZ83] D. Brand, P. Zafiropulo, “On Communicating Finite-State Machines,” JACM, Vol. 30,
No. 2, Apr. 1983, pp. 323-342.

[BuC86] M. Burke, R. Cytron, “Interprocedural Dependence Analysis and Paralleliisa.tion,”
SIGPLAN Symp. Compiler Construction, 1986.

[Bun83] A. Bundy, The Computer Modeling of Mathematical Reasoning, Academic Press, New
York,1983.

[Cas86] T.L. Casavant, “Scheduling in Distributed Computing Systems,” Ph.D. Thesis,
Department of Electrical and Computer Engineering, University of Iowa, IoWa City,
IA,May 1986.

[CaK86a] Ti. Casavant, J.G. Kuhl, “A Formal Model of Distributed Decision-Making and Its
Application to Distributed Load Balancing,” 6th Int'l Conf. Distributed Computing

Systems, May 1986, pp. 232-239.
[CaK86b] T.L. Casavant, J.G. Kuhl, “An Examination of the Effects of Global Knowledge on

Scheduling Algorithms for Distributed Computing Systems,” Technical Report TR-EE
86-34, School of Electrical Engineering, Purdue University, 1986.

[CaK86c] T.L. Casavant, J.G. Kuhl, “Effects of Response and Stability on Scheduling in Distri
buted Computing Systems,” Electrical Engineering Technical Report, TR-EE 86-38,
School of Electrical Engineering, Purdue University, 1986.

• ‘ ■ ■ ; ■ .

[Cas87] T.L. Casavant, “DSSAP - An Automated Design Aid for Algorithms and Software
Development in Distributed Computing Systems,” 2nd Int’l Conf. Supercomputing,
1987 (to appear).

[ChA82] T.C.K. Chou, JA. Abraham, “Load Balancing in Distributed Systems,” IEEE Trans.
Software Engineering, Vol. SE-8, No. 4* Jul. 1982, pp. 401-412.

[Che84] T.E. Cheatham, “Program Reusability Through Program Transformation,” IEEE
Trans. Software Engineering, Sep. 1984.

[C0A86] R,P. Cook, R.J. Auletta, “StarLite, A Visual Simulation Package for Software Proto
typing,” SIGPLAN l86 Symp. Language Interfaces and Programming Environments,
1986, pp. 102-110.

[C0K86] K.D. Cooper, K. Kennedy, L. Torezon, “Interprocedural Optimization: Eliminating
Unnecessary Recompilation,” SIGPLAN Symp. Compiler Construction, 1986.

[DiK84] H. Dietz, D. Klappholz, “Refining A Conventional Language for Race-free
Specification of Parallel Algorithms,” 1984 Int9l Conf. Parallel Processing, August,
1985.

[DiK85] H. Dietz, D. Klappholz, “Refined C: A. Sequential Language for Parallel Program
ming,” 1985 Int7 Conf. Parallel Processing, August, 1985.

[Dij75] E.W. Dijkstra, “Guarded Commands, Nondeterminacy, an Formal Derivations of Pro
grams,” CACM, Vol. 18, No. 8, Aug. 1975, pp. 453-457.

[Fis84] JA. Fisher, “The VLIW Machine: A Multiprocessor for Compiling Scientific Code,”
IEEE Computer, pp. 45-53, Jul. 1984.

[Gar85] K. Garg, “An Approach to Performance Specification of Communication Protocols
Using Timed Petri Nets,” IEEE Trans. Software Engineering, Vol. SE-11, No. 10, Oct.
1985, pp. 1216-1224.

[Hoa74] CA.R. Hoare, “Monitors: An Operating System Structuring Concept,” CACM, Vol.
17, No. 10, Oct. 1974, pp. 549-557.

[K1S87] D. Klappholz, K. Stein, H. Park, H. Dietz, “Detecting Potential Parallel Execution in
Sequential Code,” 1987 Int’l Conf. Parallel Processing, Aug. 1987, (submitted).

[Kuc84] D.J. Kuck et al, “The Effects of Program Restructuring, Algorithm Change, and
Architecture Choice on Program Performance,” 1984 InVl Conf. Parallel Processing,
Aug. 1984.

[KuS85] J.T. Kuehn, H.J. Siegel, "Extensions to the C Programming Language foe
SIMD/MIMD Parallelism," 1985 Int’l Conf. Parallel Processing, August, 1985, pp.
232-235.

[Lin7l] B.W. Lindgren, Elements o f Decision Theory, MacMillan, New York, 1971.
[MaF84] B.N. Malm, G.M. Flachs, “Algorithm Modeling on Distributed Systems,” 7

Conf. Distributed Computing Systems, May 1984, pp. 62-68.
[MaL86] D.C Marinescu, C. Lin, “Preliminary results on multiprocessor modeling and analysis

using stochastic Petri nets,” Twenty-Fourth Allerton Conference Communication, Con

- 29 -

trol and Computing, Oct. 1986.
[MaW86] K. Marzullo, D. Wiebe, “Jasmine: A Software System Modeling Facility,” SIGPLAN

186 Symp. Language Interface8 and Programming Environments, 1986, pp. 121-131.
[NiH85] L.M. Ni, K. Hwang, “Optimal Load Balancing in a Multiple Processor System with

Many Job Classes,” IEEE Trans. Software Engineering, Vol. SE-11, No. 5, May 1985,
pp. 491-496,

[Nic85] A. Nicolau, “Uniform Parallelism Exploitation in Ordinary Programs,” 1985 Int9l

Conf. Parallel Processing, Aug. 1985.
[Ozs85] M.T. Ozsu, “Modeling and Analysis of Distributed Database Concurrency Control

Algorithms Using an Extended Petri Net Formalism,” IEEE Trans. Software

Engineering, Vol.'SE-11, No. 10, Oct. 1985, pp. 1225-1239.
[PaK80] DA. Padua, D.J. Kuck, D.H. Lawrie, “High-Speed Multiprocessors and Compilation

Techniques,” IEEE Trans. Computers, Sep. 1980.
[Pet77] J.L. Peterson, “Petri Nets,” Computing Surveys, Vol. 9, Sep. 1977, pp. 223-252.
[RaG86] C.V. Ramamoorthy, Garg, V.J., A. Prakash, “Programming in the Large,” IEEE

Trans. Software Engineering, Vol. SE-12, No. 7, July 1986, pp769-783.
[SaH86] V. Sarkar, J. Hennessy, “Compile-Time Partitioning and Scheduling of Parallel Pro

grams,” SIGPLAN Symp. Compiler Construction, 1986.
[SeR85] Z. Segall, L. Rudolph, “PIE: A Programming and Instrumentation Environment for

Parallel Processing,” Software, Vol. 2, No. 6, Nov. 1985, pp. 22-37.
[SmK85] D. Smith, G. Kotik, S. Westfold, “Research on Knowledge-based Software Engineering

Environments at Kestrel Institute,” IEEE Trans, Software Engineering, Nov. 1985.
[Smi80] R.G. Smith, “The Contract Net Protocol: High-Level Communication and Control in

a Distributed Problem Solver,” IEEE Trans. Computers, Vol. C-29, No* 12, Dec. 1980,
pp. 1104-1113.

[SnS86] L. Snyder, D. Socha, “Poker on the COSMIC Cube: The First Retargetable Parallel
Programming Language and Environment,” 1986 Int9l Conf. Parallel Processing, Aug.
1986, pp. 628-635.

[Sta85] JA. Stankovic, “An Application of Bayesian Decision Theory to Decentralized Con
trol of Job Scheduling,” IEEE Trans. Computers, Vol. C-34, No. 2, Feb. 1985, pp.
117-130.

[Swe85] R.E. Sweet, “The Mesa Programming Environment,” SIGPLAN ‘85 Symp. Language

Interfaces and Programming Environments, 1985, pp. 216-229.
[Tei84] W. Teitelman, “A Tour Through Cedar,” Software, Vol. 1, No. 2, April 1984, pp. 44-

73.
[Vei85] A. Veidenbaum, “Compiler Optimizations and Architecture Design Issues for Mul

tiprocessors,” Ph.D. Thesis, University of Illinois at Urbana-Champaign, May 1985,
pp. 96-101.

[Wat85] R.C. Waters, “The Programmer’s Apprentice: A Session with KBEmacs,” IEEE Trans.

Software Engineering, Vol. SE-11, No. 11, Nov. 1985, pp. 1296-1317.
[Zan84] C. Zaniolo, “Object-oriented Programming in Prolog,” fth Symp. Logic Programming,

1984, pp265-271.

	Purdue University
	Purdue e-Pubs
	6-1-1987

	The PARSE Programming Paradigm. Part I: Software Development Methodology. Part II: Software Development Support Tools
	T. L. Casavant
	Henry G. Dietz
	P. C.-Y. Sheu
	H. J. Siegel

	tmp.1542052450.pdf.rAPC9

