1,044 research outputs found

    Lorentzian manifolds and scalar curvature invariants

    Full text link
    We discuss (arbitrary-dimensional) Lorentzian manifolds and the scalar polynomial curvature invariants constructed from the Riemann tensor and its covariant derivatives. Recently, we have shown that in four dimensions a Lorentzian spacetime metric is either I\mathcal{I}-non-degenerate, and hence locally characterized by its scalar polynomial curvature invariants, or is a degenerate Kundt spacetime. We present a number of results that generalize these results to higher dimensions and discuss their consequences and potential physical applications.Comment: submitted to CQ

    A rocket ozonesonde for geophysical research and satellite intercomparison

    Get PDF
    The in-situ rocketsonde for ozone profile measurements developed and flown for geophysical research and satellite comparison is reviewed. The measurement principle involves the chemiluminescence caused by ambient ozone striking a detector and passive pumping as a means of sampling the atmosphere as the sonde descends through the atmosphere on a parachute. The sonde is flown on a meteorological sounding rocket, and flight data are telemetered via the standard meteorological GMD ground receiving system. The payload operation, sensor performance, and calibration procedures simulating flight conditions are described. An error analysis indicated an absolute accuracy of about 12 percent and a precision of about 8 percent. These are combined to give a measurement error of 14 percent

    Viscous Bianchi type I universes in brane cosmology

    Get PDF
    We consider the dynamics of a viscous cosmological fluid in the generalized Randall-Sundrum model for an anisotropic, Bianchi type I brane. To describe the dissipative effects we use the Israel-Hiscock-Stewart full causal thermodynamic theory. By assuming that the matter on the brane obeys a linear barotropic equation of state, and the bulk viscous pressure has a power law dependence on the energy density, the general solution of the field equations can be obtained in an exact parametric form. The obtained solutions describe generally a non-inflationary brane world. In the large time limit the brane Universe isotropizes, ending in an isotropic and homogeneous state. The evolution of the temperature and of the comoving entropy of the Universe is also considered, and it is shown that due to the viscous dissipative processes a large amount of entropy is created in the early stages of evolution of the brane world.Comment: 13 pages, 5 figures, to appear in Class. Quantum Gra

    Whole genome sequencing of Mycobacterium tuberculosis reveals slow growth and low mutation rates during latent infections in humans

    Get PDF
    Very little is known about the growth and mutation rates of Mycobacterium tuberculosis during latent infection in humans. However, studies in rhesus macaques have suggested that latent infections have mutation rates that are higher than that observed during active tuberculosis disease. Elevated mutation rates are presumed risk factors for the development of drug resistance. Therefore, the investigation of mutation rates during human latency is of high importance. We performed whole genome mutation analysis of M. tuberculosis isolates from a multi-decade tuberculosis outbreak of the New Zealand Rangipo strain. We used epidemiological and phylogenetic analysis to identify four cases of tuberculosis acquired from the same index case. Two of the tuberculosis cases occurred within two years of exposure and were classified as recently transmitted tuberculosis. Two other cases occurred more than 20 years after exposure and were classified as reactivation of latent M. tuberculosis infections. Mutation rates were compared between the two recently transmitted pairs versus the two latent pairs. Mean mutation rates assuming 20 hour generation times were 5.5X10⁻Âč⁰ mutations/bp/generation for recently transmitted tuberculosis and 7.3X10⁻ÂčÂč mutations/bp/generation for latent tuberculosis. Generation time versus mutation rate curves were also significantly higher for recently transmitted tuberculosis across all replication rates (p = 0.006). Assuming identical replication and mutation rates among all isolates in the final two years before disease reactivation, the u20hr mutation rate attributable to the remaining latent period was 1.6×10⁻ÂčÂč mutations/bp/generation, or approximately 30 fold less than that calculated during the two years immediately before disease. Mutations attributable to oxidative stress as might be caused by bacterial exposure to the host immune system were not increased in latent infections. In conclusion, we did not find any evidence to suggest elevated mutation rates during tuberculosis latency in humans, unlike the situation in rhesus macaques

    Anisotropy in Bianchi-type brane cosmologies

    Full text link
    The behavior near the initial singular state of the anisotropy parameter of the arbitrary type, homogeneous and anisotropic Bianchi models is considered in the framework of the brane world cosmological models. The matter content on the brane is assumed to be an isotropic perfect cosmological fluid, obeying a barotropic equation of state. To obtain the value of the anisotropy parameter at an arbitrary moment an evolution equation is derived, describing the dynamics of the anisotropy as a function of the volume scale factor of the Universe. The general solution of this equation can be obtained in an exact analytical form for the Bianchi I and V types and in a closed form for all other homogeneous and anisotropic geometries. The study of the values of the anisotropy in the limit of small times shows that for all Bianchi type space-times filled with a non-zero pressure cosmological fluid, obeying a linear barotropic equation of state, the initial singular state on the brane is isotropic. This result is obtained by assuming that in the limit of small times the asymptotic behavior of the scale factors is of Kasner-type. For brane worlds filled with dust, the initial values of the anisotropy coincide in both brane world and standard four-dimensional general relativistic cosmologies.Comment: 12 pages, no figures, to appear in Class. Quantum Gra

    Kasner and Mixmaster behavior in universes with equation of state w \ge 1

    Full text link
    We consider cosmological models with a scalar field with equation of state w≄1w\ge 1 that contract towards a big crunch singularity, as in recent cyclic and ekpyrotic scenarios. We show that chaotic mixmaster oscillations due to anisotropy and curvature are suppressed, and the contraction is described by a homogeneous and isotropic Friedmann equation if w>1w>1. We generalize the results to theories where the scalar field couples to p-forms and show that there exists a finite value of ww, depending on the p-forms, such that chaotic oscillations are suppressed. We show that Z2Z_2 orbifold compactification also contributes to suppressing chaotic behavior. In particular, chaos is avoided in contracting heterotic M-theory models if w>1w>1 at the crunch.Comment: 25 pages, 2 figures, minor changes, references adde

    Are braneworlds born isotropic?

    Get PDF
    It has recently been suggested that an isotropic singularity may be a generic feature of brane cosmologies, even in the inhomogeneous case. Using the covariant and gauge-invariant approach we present a detailed analysis of linear perturbations of the isotropic model Fb{\cal F}_b which is a past attractor in the phase space of homogeneous Bianchi models on the brane. We find that for matter with an equation of state parameter γ>1\gamma > 1, the dimensionless variables representing generic anisotropic and inhomogeneous perturbations decay as t→0t\to 0, showing that the model Fb{\cal F}_b is asymptotically stable in the past. We conclude that brane universes are born with isotropy naturally built-in, contrary to standard cosmology. The observed large-scale homogeneity and isotropy of the universe can therefore be explained as a consequence of the initial conditions if the brane-world paradigm represents a description of the very early universe.Comment: Changed to match published versio

    Reply to: Atom gravimeters and the gravitational redshift

    Full text link
    We stand by our result [H. Mueller et al., Nature 463, 926-929 (2010)]. The comment [P. Wolf et al., Nature 467, E1 (2010)] revisits an interesting issue that has been known for decades, the relationship between test of the universality of free fall and redshift experiments. However, it arrives at its conclusions by applying the laws of physics that are questioned by redshift experiments; this precludes the existence of measurable signals. Since this issue applies to all classical redshift tests as well as atom interferometry redshift tests, these experiments are equivalent in all aspects in question.Comment: Reply to P. Wolf et al., arXiv:1009.060

    Scaling solution, radion stabilization, and initial condition for brane-world cosmology

    Full text link
    We propose a new, self-consistent and dynamical scenario which gives rise to well-defined initial conditions for five-dimensional brane-world cosmologies with radion stabilization. At high energies, the five-dimensional effective theory is assumed to have a scale invariance so that it admits an expanding scaling solution as a future attractor. The system automatically approaches the scaling solution and, hence, the initial condition for the subsequent low-energy brane cosmology is set by the scaling solution. At low energies, the scale invariance is broken and a radion stabilization mechanism drives the dynamics of the brane-world system. We present an exact, analytic scaling solution for a class of scale-invariant effective theories of five-dimensional brane-world models which includes the five-dimensional reduction of the Horava-Witten theory, and provide convincing evidence that the scaling solution is a future attractor.Comment: 17 pages; version accepted for PRD, references adde

    The Tumor Suppressor HHEX Inhibits Axon Growth when Prematurely Expressed in Developing Central Nervous System Neurons

    Get PDF
    Neurons in the embryonic and peripheral nervoussystem respond to injury by activating transcriptional programs supportive of axon growth, ultimately resulting in functional recovery. In contrast, neurons in the adult central nervous system (CNS) possess a limited capacity to regenerate axons after injury, fundamentally constraining repair. Activating pro-regenerative gene expression in CNS neurons is a promising therapeutic approach, but progress is hampered by incomplete knowledge of the relevant transcription factors. An emerging hypothesis is that factors implicated in cellular growth and motility outside the nervous system may also control axon growth in neurons. We therefore tested sixty-nine transcription factors, previously identified as possessing tumor suppressive or oncogenic properties in non-neuronal cells, in assays of neurite outgrowth. This screen identified YAP1 and E2F1 as enhancers of neurite outgrowth, and PITX1, RBM14, ZBTB16, and HHEX as inhibitors. Follow-up experiments are focused on the tumor suppressor HHEX, one of the strongest growth inhibitors. HHEX is widely expressed in adult CNS neurons, including corticospinal tract neurons after spinal injury, but is present only in trace amounts in immature cortical neurons and adult peripheral neurons. HHEX overexpression in early postnatal cortical neurons reduced both initial axonogenesis and the rate of axon elongation, and domain deletion analysis strongly implicated transcriptional repression as the underlying mechanism. These findings suggest a role for HHEX in restricting axon growth in the developing CNS, and substantiate the hypothesis that previously identified oncogenes and tumor suppressors can play conserved roles in axon extension
    • 

    corecore