13,239 research outputs found

    The Process is the Punishment: The Case of Bail in New South Wales

    Full text link
    In the context of bail, punitive crime policies in NSW have led to a gradual erosion of the presumption in favour of bail, the conflation of bail conditions and penalty and a steady increase in the number of persons being held on remand. Continuing this punitive turn in crime police, the Bail Act 1978 was recently amended in respect of s22A. It is this amendment and the resultantant changes to the configuration of bail that is the subject of this article

    Comparative Monte Carlo Efficiency by Monte Carlo Analysis

    Full text link
    We propose a modified power method for computing the subdominant eigenvalue λ2\lambda_2 of a matrix or continuous operator. Here we focus on defining simple Monte Carlo methods for its application. The methods presented use random walkers of mixed signs to represent the subdominant eigenfuction. Accordingly, the methods must cancel these signs properly in order to sample this eigenfunction faithfully. We present a simple procedure to solve this sign problem and then test our Monte Carlo methods by computing the λ2\lambda_2 of various Markov chain transition matrices. We first computed λ2{\lambda_2} for several one and two dimensional Ising models, which have a discrete phase space, and compared the relative efficiencies of the Metropolis and heat-bath algorithms as a function of temperature and applied magnetic field. Next, we computed λ2\lambda_2 for a model of an interacting gas trapped by a harmonic potential, which has a mutidimensional continuous phase space, and studied the efficiency of the Metropolis algorithm as a function of temperature and the maximum allowable step size Δ\Delta. Based on the λ2\lambda_2 criterion, we found for the Ising models that small lattices appear to give an adequate picture of comparative efficiency and that the heat-bath algorithm is more efficient than the Metropolis algorithm only at low temperatures where both algorithms are inefficient. For the harmonic trap problem, we found that the traditional rule-of-thumb of adjusting Δ\Delta so the Metropolis acceptance rate is around 50% range is often sub-optimal. In general, as a function of temperature or Δ\Delta, λ2\lambda_2 for this model displayed trends defining optimal efficiency that the acceptance ratio does not. The cases studied also suggested that Monte Carlo simulations for a continuum model are likely more efficient than those for a discretized version of the model.Comment: 23 pages, 8 figure

    Listen carefully: transgender voices in the workplace

    Get PDF
    We find that only 17% of FTSE 100 company websites refer directly to transgender (‘trans’) individuals, illustrating the extent to which trans voices are unheard in the workplace. We propose that these voices are missing for a number of reasons: voluntary silence to protect oneself from adverse circumstances; the subsumption of trans voices within the larger ‘LGBT’ community; assimilation, wherein many trans voices become affiliated with those of their post-transition gender; multiple trans voices arising from diversity within the transgender community; and limited access to voice mechanisms for transgender employees. We identify the negative implications of being unheard for individual trans employees, for organizational outcomes, and for business and management scholarship, and propose ways in which organizations can listen more carefully to trans voices. Finally, we introduce an agenda for future research that tests the applicability of the theoretical framework of invisible stigma disclosure to transgender individuals, and calls for new theoretical and empirical developments to identify HRM challenges and best practices for respecting trans employees and their choices to remain silent or be heard

    Fundamental properties and applications of quasi-local black hole horizons

    Full text link
    The traditional description of black holes in terms of event horizons is inadequate for many physical applications, especially when studying black holes in non-stationary spacetimes. In these cases, it is often more useful to use the quasi-local notions of trapped and marginally trapped surfaces, which lead naturally to the framework of trapping, isolated, and dynamical horizons. This framework allows us to analyze diverse facets of black holes in a unified manner and to significantly generalize several results in black hole physics. It also leads to a number of applications in mathematical general relativity, numerical relativity, astrophysics, and quantum gravity. In this review, I will discuss the basic ideas and recent developments in this framework, and summarize some of its applications with an emphasis on numerical relativity.Comment: 14 pages, 2 figures. Based on a talk presented at the 18th International Conference on General Relativity and Gravitation, 8-13 July 2007, Sydney, Australi

    Prosocial response to client-instigated victimisation: the roles of forgiveness and workgroup conflict

    Get PDF
    We investigate forgiveness as a human service employee coping response to client-instigated victimizations and further explore the role of workgroup conflict in 1) facilitating this response, and 2) influencing the relationship between victimization and workplace outcomes. Using the theoretical lens of Conservation of Resources (Hobfoll, 1989), we propose that employees forgive clients – especially in the context of low workgroup conflict. From low to moderate levels of client-instigated victimization, we suggest that victimization and forgiveness are positively related; however, this positive relationship does not prevail when individuals confront egregious levels of victimization (i.e., an inverted-U shape). This curvilinear relationship holds under low but not under high workgroup conflict. Extending this model to workplace outcomes, findings also demonstrate that the indirect effects of victimization on job satisfaction, burnout, and turnover intentions are mediated by forgiveness when workgroup conflict is low. Experiment- and field-based studies provide evidence for the theoretical model

    Self-Adaptive Quadrature and Numerical Path Integration

    Get PDF
    In the present paper we explore the use of generalized Gaussian quadrature methods in the context of equilibrium path integral applications. Using moment techniques, we devise a compact, self-adaptive approach for use in conjunction with selected classes of interaction potentials. We demonstrate that, when applicable, the resulting approach reduces appreciably the number of potential energy evaluations required in equilibrium path integral simulations

    Monte Carlo Determination of Multiple Extremal Eigenpairs

    Full text link
    We present a Monte Carlo algorithm that allows the simultaneous determination of a few extremal eigenpairs of a very large matrix without the need to compute the inner product of two vectors or store all the components of any one vector. The new algorithm, a Monte Carlo implementation of a deterministic one we recently benchmarked, is an extension of the power method. In the implementation presented, we used a basic Monte Carlo splitting and termination method called the comb, incorporated the weight cancellation method of Arnow {\it et al.}, and exploited a new sampling method, the sewing method, that does a large state space sampling as a succession of small state space samplings. We illustrate the effectiveness of the algorithm by its determination of the two largest eigenvalues of the transfer matrices for variously-sized two-dimensional, zero field Ising models. While very likely useful for other transfer matrix problems, the algorithm is however quite general and should find application to a larger variety of problems requiring a few dominant eigenvalues of a matrix.Comment: 22 pages, no figure

    Horizon energy and angular momentum from a Hamiltonian perspective

    Full text link
    Classical black holes and event horizons are highly non-local objects, defined in terms of the causal past of future null infinity. Alternative, (quasi)local definitions are often used in mathematical, quantum, and numerical relativity. These include apparent, trapping, isolated, and dynamical horizons, all of which are closely associated to two-surfaces of zero outward null expansion. In this paper we show that three-surfaces which can be foliated with such two-surfaces are suitable boundaries in both a quasilocal action and a phase space formulation of general relativity. The resulting formalism provides expressions for the quasilocal energy and angular momentum associated with the horizon. The values of the energy and angular momentum are in agreement with those derived from the isolated and dynamical horizon frameworks.Comment: 39 pages, 3 figures, Final Version : content essentially unchanged but many small improvements made in response to referees, a few references adde

    Ultrareliable, fault-tolerant control systems: A conceptual description

    Get PDF
    An Ultrareliable, Fault-Tolerant, Control-System (UFTCS) concept is described using a systems design philosophy which allows development of system structures containing virtually no common elements. Common elements limit achievable system reliability and can cause catastrophic loss of fault-tolerant system function. The UFTCS concept provides the means for removing common system elements by permitting the elements of the system to operate as independent, uncoupled entities. Multiple versions of the application program are run on dissimilar hardware. Fault tolerance is achieved through the use of static redundancy management

    Worker heterogeneity, new monopsony, and training

    Get PDF
    A worker's output depends not only on his/her own ability but also on that of colleagues, who can facilitate the performance of tasks that each individual cannot accomplish on his/her own. We show that this common-sense observation generates monopsony power and is sufficient to explain why employers might expend resources on training employees even when the training is of use to other firms. We show that training will take place in better-than-average or ‘good’ firms enjoying greater monopsony power, whereas ‘bad’ firms will have low-ability workers unlikely to receive much training
    • 

    corecore