574 research outputs found
Acoustic Faraday effect in TbGaO
The transverse acoustic wave propagating along the [100] axis of the cubic
TbGaO (acoustic mode) is doubly degenerate. A magnetic
field applied in the direction of propagation lifts this degeneracy and leads
to the rotation of the polarization vector - the magneto-acoustic Faraday
rotation. Here, we report on the observation and analysis of the
magneto-acoustic Faraday-effect in TbGaO in static and pulsed
magnetic fields. We present also a theoretical model based on magnetoelastic
coupling of 4 electrons to both, acoustic and optical phonons and an
effective coupling between them. This model explains the observed linear
frequency dependence of the Faraday rotation angle
A steerable UV laser system for the calibration of liquid argon time projection chambers
A number of liquid argon time projection chambers (LAr TPC's) are being build
or are proposed for neutrino experiments on long- and short baseline beams. For
these detectors a distortion in the drift field due to geometrical or physics
reasons can affect the reconstruction of the events. Depending on the TPC
geometry and electric drift field intensity this distortion could be of the
same magnitude as the drift field itself. Recently, we presented a method to
calibrate the drift field and correct for these possible distortions. While
straight cosmic ray muon tracks could be used for calibration, multiple coulomb
scattering and momentum uncertainties allow only a limited resolution. A UV
laser instead can create straight ionization tracks in liquid argon, and allows
one to map the drift field along different paths in the TPC inner volume. Here
we present a UV laser feed-through design with a steerable UV mirror immersed
in liquid argon that can point the laser beam at many locations through the
TPC. The straight ionization paths are sensitive to drift field distortions, a
fit of these distortion to the linear optical path allows to extract the drift
field, by using these laser tracks along the whole TPC volume one can obtain a
3D drift field map. The UV laser feed-through assembly is a prototype of the
system that will be used for the MicroBooNE experiment at the Fermi National
Accelerator Laboratory (FNAL)
Elevation gradients of European climate change in the regional climate model COSMO-CLM
A transient climate scenario experiment of the regional climate model COSMO-CLM is analyzed to assess the elevation dependency of 21st century European climate change. A focus is put on near-surface conditions. Model evaluation reveals that COSMO-CLM is able to approximately reproduce the observed altitudinal variation of 2m temperature and precipitation in most regions and most seasons. The analysis of climate change signals suggests that 21st century climate change might considerably depend on elevation. Over most parts of Europe and in most seasons, near-surface warming significantly increases with elevation. This is consistent with the simulated changes of the free-tropospheric air temperature, but can only be fully explained by taking into account regional-scale processes involving the land surface. In winter and spring, the anomalous high-elevation warming is typically connected to a decrease in the number of snow days and the snow-albedo feedback. Further factors are changes in cloud cover and soil moisture and the proximity of low-elevation regions to the sea. The amplified warming at high elevations becomes apparent during the first half of the 21st century and results in a general decrease of near-surface lapse rates. It does not imply an early detection potential of large-scale temperature changes. For precipitation, only few consistent signals arise. In many regions precipitation changes show a pronounced elevation dependency but the details strongly depend on the season and the region under consideration. There is a tendency towards a larger relative decrease of summer precipitation at low elevations, but there are exceptions to this as wel
Analysis of a jet stream induced gravity wave associated with an observed ice cloud over Greenland
International audienceA polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. Is was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~3 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several instability diagnostics near the tropopause level provide consistent evidence that the wave is emitted by the geostrophic adjustment of a jet instability associated with an intense, rapidly evolving, anticyclonically curved jet stream. In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, an approximate jet instability diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from an unstable jet
Elastic Properties and Magnetic Phase Diagrams of Dense Kondo Compound Ce0.75La0.25B6
We have investigated the elastic properties of the cubic dense Kondo compound
Ce0.75La0.25B6 by means of ultrasonic measurements. We have obtained magnetic
fields vs temperatures (H-T) phase diagrams under magnetic fields along the
crystallographic [001], [110] and [111] axes. An ordered phase IV showing the
elastic softening of c44 locates in low temperature region between 1.6 and 1.1
K below 0.7 T in all field directions. The phase IV shows an isotropic nature
with regard to the field directions, while the antiferro-magnetic phase III
shows an anisotropic character. A remarkable softening of c44 and a spontaneous
trigonal distortion εyz+εzx+εxy recently reported by Akatsu et
al. [J. Phys. Soc. Jpn. 72 (2003) 205] in the phase IV favor a ferro-quadrupole
(FQ) moment of Oyz+Ozx+Oxy induced by an octupole ordering.Comment: 9 figures, Strongly Correlated Electron
Critical Phenomena at the Antiferromagnetic Phase Transition of Azurite
We report on high-resolution acoustic, specific-heat and thermal expansion
measurements in the vicinity of the antiferromagnetic phase transition at T_N =
1.88 K on a high-quality single crystal of the natural mineral azurite. A
detailed investigation of the critical contribution to the various quantities
at T_N is presented. The set of critical exponents and amplitude ratios of the
singular contributions above and below the transition indicate that the system
can be reasonably well described by a three-dimensional Heisenberg
antiferromagnet.Comment: 9 pages, 3 figures, proceedings of ICM 2012, JKP
Analysis of a jet stream induced gravity wave associated with an observed ice cloud over Greenland
International audienceA polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. It was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~4.5 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several diagnostics near the tropopause level provide evidence that the wave is emitted from an intense, rapidly evolving, anticyclonically curved jet stream. The precise physical process responsible for the wave emission could not be identified definitely, but geostrophic adjustment and shear instability are likely candidates. In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, the non-linear balance equation diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from spontaneous adjustment
Magnetic edge states of impenetrable stripe
The electron motion in a strong perpendicular magnetic field close to the
impenetrable stripe is considered by making use of the singular integral
equation technique. The energy spectrum is calculated and compared with the
energy spectrum of the round antidot.Comment: REVTeX4 format, 9 pages with 9 figures (*.eps
Lattice Distortion and Octupole Ordering Model in CexLa1-xB6
Possible order parameters of the phase IV in CexLa1-xB6 are discussed with
special attention to the lattice distortion recently observed. A
\Gamma_{5u}-type octupole order with finite wave number is proposed as the
origin of the distortion along the [111] direction. The \Gamma_8 crystalline
electric field (CEF) level splits into three levels by a mean field with the
\Gamma_{5u} symmetry. The ground and highest singlets have the same quadrupole
moment, while the intermediate doublet has an opposite sign. It is shown that
any collinear order of \Gamma_{5u}-type octupole moment accompanies the
\Gamma_{5g}-type ferro-quadrupole order, and the coupling of the quadrupole
moment with the lattice induces the distortion. The cusp in the magnetization
at the phase transition is reproduced, but the internal magnetic field due to
the octupole moment is smaller than the observed one by an order of magnitude.Comment: 5 pages, 4 figures, submitted to J. Phys. Soc. Jp
- …