262 research outputs found
Fancy Citrus, Feel Good: Positive Judgment of Citrus Odor, but Not the Odor Itself, Is Associated with Elevated Mood during Experienced Helplessness
Aromatherapy claims that citrus essential oils exert mood lifting effects. Controlled studies, however, have yielded inconsistent results. Notably, studies so far did not control for odor pleasantness, although pleasantness is a critical determinant of emotional responses to odors. This study investigates mood lifting effects of d-(+)-limonene, the most prominent substance in citrus essential oils, with respect to odor quality judgments.Negative mood was induced within 78 participants using a helplessness paradigm (unsolvable social discrimination task). During this task, participants were continuously (mean duration: 19.5 min) exposed to d-(+)-limonene (n = 25), vanillin (n = 26), or diethyl phthalate (n = 27). Participants described their mood (Self-Assessment-Manikin, basic emotion ratings) and judged the odors’ quality (intensity, pleasantness, unpleasantness, familiarity) prior to and following the helplessness induction. The participants were in a less positive mood after the helplessness induction (p < .001), irrespective of the odor condition. Still, the more pleasant the participants judged the odors, the less effective the helplessness induction was in reducing happiness (p = .019).The results show no odor specific mood lifting effect of d-(+)-limonene, but indicate a positive effect of odor pleasantness on mood. The study highlights the necessity to evaluate odor judgments in aromatherapy research
Empathic Cognitions Affected by Undetectable Social Chemosignals: An EEG Study on Visually Evoked Empathy for Pain in an Auditory and Chemosensory Context
Reduction of mu activity within the EEG is an indicator of cognitive empathy and can be generated in response to visual depictions of others in pain. The current study tested whether this brain response can be modulated by an auditory and a chemosensory context. Participants observed pictures of painful and non-painful actions while pain associated and neutral exclamations were presented (Study 1, N = 30) or while chemosensory stimuli were presented via a constant flow olfactometer (Study 2, N = 22). Chemosensory stimuli were sampled on cotton pads while donors participated in a simulated job interview (stress condition) or cycled on a stationary bike (sport condition). Pure cotton was used as a control. The social chemosignals could not be detected as odors. Activity within the 8–13 Hz band at electrodes C3, C4 (mu activity) and electrodes O1, O2 (alpha-activity) was calculated using Fast-Fourier-Transformation (FFT). As expected, suppression of power in the 8–13 Hz band was stronger when painful as compared to non-painful actions were observed (Study 1, p = 0.020; Study 2, p = 0.005). In addition, as compared to the neutral auditory and chemosensory context, painful exclamations (Study 1, p = 0.039) and chemosensory stress signals (Study 2, p = 0.014) augmented mu-/alpha suppression also in response to non-painful pictures. The studies show that processing of social threat-related information is not dominated by visual information. Rather, cognitive appraisal related to empathy can be affected by painful exclamations and subthreshold chemosensory social information
Approximate Hermitian-Yang-Mills structures and semistability for Higgs bundles. II: Higgs sheaves and admissible structures
We study the basic properties of Higgs sheaves over compact K\"ahler
manifolds and we establish some results concerning the notion of semistability;
in particular, we show that any extension of semistable Higgs sheaves with
equal slopes is semistable. Then, we use the flattening theorem to construct a
regularization of any torsion-free Higgs sheaf and we show that it is in fact a
Higgs bundle. Using this, we prove that any Hermitian metric on a
regularization of a torsion-free Higgs sheaf induces an admissible structure on
the Higgs sheaf. Finally, using admissible structures we proved some properties
of semistable Higgs sheaves.Comment: 18 pages; some typos correcte
Antimicrobial and Biocide Resistance among Feline and Canine Staphylococcus aureus and Staphylococcus pseudintermedius Isolates from Diagnostic Submissions
A total of 114 Staphylococcus isolates from various infections of companion animals, including 43 feline Staphylococcus aureus, 19 canine S. aureus, 11 feline Staphylococcus pseudintermedius and 41 canine S. pseudintermedius were investigated for (i) their susceptibility to 24 antimicrobial agents and three combinations of antimicrobial agents by broth microdilution following CLSI recommendations and (ii) the corresponding resistance genes. In addition, the isolates were tested for their susceptibility to the four biocides benzalkonium chloride, chlorhexidine, polyhexanide and octenidine by a recently developed biocide susceptibility testing protocol. Penicillin resistance via blaZ was the dominant resistance property in all four groups of isolates ranging between 76.7 and 90.9%. About one quarter of the isolates (25.4%) proved to be methicillin-resistant and carried the genes mecA or mecC. Macrolide resistance was the second most prevalent resistance property (27.2%) and all isolates harbored the resistance genes erm(A), erm(B), erm(C), erm(T) or msr(A), alone or in combinations. Fluoroquinolone resistance was detected in 21.1% of all isolates tested, whereas tetracycline resistance via tet(K) and/or tet(M) occurred in 19.3% of the isolates. Resistance to last resort antimicrobial agents in human medicine was seen only in single isolates, if at all. The minimal inhibitory concentrations (MICs) of the four biocides showed unimodal distributions and were very similar for the four groups of staphylococci. Because of the large number of (multi)resistant isolates, antimicrobial susceptibility testing of feline and canine S. aureus and S. pseudintermedius isolates is highly recommended before the start of an antimicrobial chemotherapy. Moreover, no hints towards the development of biocide resistance were detected
Antimicrobial and Biocide Resistance among Canine and Feline Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii Isolates from Diagnostic Submissions
A total of 215 isolates from infections of dogs and cats, including 49 Enterococcus faecalis, 37 Enterococcus faecium, 59 Escherichia coli, 56 Pseudomonas aeruginosa, and 14 Acinetobacter baumannii, were investigated for their susceptibility to 27 (Gram-positive bacteria) or 20 (Gram-negative bacteria) antimicrobial agents/combinations of antimicrobial agents by broth microdilution according to the recommendations of the Clinical and Laboratory Standards Institute. Moreover, all isolates were analysed for their susceptibility to the biocides benzalkonium chloride, chlorhexidine, polyhexanide, and octenidine by a recently published broth microdilution biocide susceptibility testing method. While the E. faecalis isolates did not show expanded resistances, considerable numbers of the E. faecium isolates were resistant to penicillins, macrolides, tetracyclines, and fluoroquinolones. Even a single vancomycin-resistant isolate that carried the vanA gene cluster was detected. Expanded multiresistance phenotypes were also detected among the E. coli isolates, including a single carbapenem-resistant, blaOXA-48-positive isolate. In addition, multiresistant A. baumannii isolates were detected. The minimal inhibitory concentrations of the biocides showed unimodal distributions but differed with respect to the biocide and the bacterial species investigated. Although there were no indications of a development of biocide resistance, some P. aeruginosa isolates exhibited benzalkonium MICs higher than the highest test concentration
Solutions of the Strominger System via Stable Bundles on Calabi-Yau Threefolds
We prove that a given Calabi-Yau threefold with a stable holomorphic vector
bundle can be perturbed to a solution of the Strominger system provided that
the second Chern class of the vector bundle is equal to the second Chern class
of the tangent bundle. If the Calabi-Yau threefold has strict SU(3) holonomy
then the equations of motion derived from the heterotic string effective action
are also satisfied by the solutions we obtain.Comment: 19 pages, late
Towards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO4 Cathodes
Lithium iron phosphate, LiFePO4 (LFP) has demonstrated promising performance as a cathode material in lithium ion batteries (LIBs), by overcoming the rate performance issues from limited electronic conductivity. Nano-sized vanadium-doped LFP (V-LFP) was synthesized using a continuous hydrothermal process using supercritical water as a reagent. The atomic % of dopant determined the particle shape. 5 at. % gave mixed plate and rod-like morphology, showing optimal electrochemical performance and good rate properties vs. Li. Specific capacities of >160 mAh g−1 were achieved. In order to increase the capacity of a full cell, V-LFP was cycled against an inexpensive micron-sized metallurgical grade Si-containing anode. This electrode was capable of reversible capacities of approximately 2000 mAh g−1 for over 150 cycles vs. Li, with improved performance resulting from the incorporation of few layer graphene (FLG) to enhance conductivity, tensile behaviour and thus, the composite stability. The cathode material synthesis and electrode formulation are scalable, inexpensive and are suitable for the fabrication of larger format cells suited to grid and transport applications
Time-resolved single-particle x-ray scattering reveals electron-density as coherent plasmonic-nanoparticle-oscillation source
Dynamics of optically-excited plasmonic nanoparticles are presently
understood as a series of sequential scattering events, involving
thermalization processes after pulsed optical excitation. One important step is
the initiation of nanoparticle breathing oscillations. According to established
experiments and models, these are caused by the statistical heat transfer from
thermalized electrons to the lattice. An additional contribution by hot
electron pressure has to be included to account for phase mismatches that arise
from the lack of experimental data on the breathing onset. We used optical
transient-absorption spectroscopy and time-resolved single-particle
x-ray-diffractive imaging to access the excited electron system and lattice.
The time-resolved single-particle imaging data provided structural information
directly on the onset of the breathing oscillation and confirmed the need for
an additional excitation mechanism to thermal expansion, while the observed
phase-dependence of the combined structural and optical data contrasted
previous studies. Therefore, we developed a new model that reproduces all our
experimental observations without using fit parameters. We identified
optically-induced electron density gradients as the main driving source.Comment: 32 pages, 5 figures, 1 supporting information document include
Utilizing high-throughput experimentation to enhance specific productivity of an E.coli T7 expression system by phosphate limitation
<p>Abstract</p> <p>Background</p> <p>The specific productivity of cultivation processes can be optimized, amongst others, by using genetic engineering of strains, choice of suitable host/vector systems or process optimization (e.g. choosing the right induction time). A further possibility is to reduce biomass buildup in favor of an enhanced product formation, e.g. by limiting secondary substrates in the medium, such as phosphate. However, with conventional techniques (e.g. small scale cultivations in shake flasks), it is very tedious to establish optimal conditions for cell growth and protein expression, as the start of protein expression (induction time) and the degree of phosphate limitation have to be determined in numerous concerted, manually conducted experiments.</p> <p>Results</p> <p>We investigated the effect of different induction times and a concurrent phosphate limitation on the specific productivity of the T7 expression system <it>E.coli </it>BL21(DE3) pRhotHi-2-EcFbFP, which produces the model fluorescence protein EcFbFP upon induction. Therefore, specific online-monitoring tools for small scale cultivations (RAMOS, BioLector) as well as a novel cultivation platform (Robo-Lector) were used for rapid process optimization. The RAMOS system monitored the oxygen transfer rate in shake flasks, whereas the BioLector device allowed to monitor microbial growth and the production of EcFbFP in microtiter plates. The Robo-Lector is a combination of a BioLector and a pipetting robot and can conduct high-throughput experiments fully automated. By using these tools, it was possible to determine the optimal induction time and to increase the specific productivity for EcFbFP from 22% (for unlimited conditions) to 31% of total protein content of the <it>E.coli </it>cells via a phosphate limitation.</p> <p>Conclusions</p> <p>The results revealed that a phosphate limitation at the right induction time was suitable to redirect the available cellular resources during cultivation to protein expression rather than in biomass production. To our knowledge, such an effect was shown for the first time for an IPTG-inducible expression system. Finally, this finding and the utilization of the introduced high-throughput experimentation approach could help to find new targets to further enhance the production capacity of recombinant <it>E.coli</it>-strains.</p
- …