1,175 research outputs found

    Solving the m-mixing problem for the three-dimensional time-dependent Schr\"{o}dinger equation by rotations: application to strong-field ionization of H2+

    Get PDF
    We present a very efficient technique for solving the three-dimensional time-dependent Schrodinger equation. Our method is applicable to a wide range of problems where a fullly three-dimensional solution is required, i.e., to cases where no symmetries exist that reduce the dimensionally of the problem. Examples include arbitrarily oriented molecules in external fields and atoms interacting with elliptically polarized light. We demonstrate that even in such cases, the three-dimensional problem can be decomposed exactly into two two-dimensional problems at the cost of introducing a trivial rotation transformation. We supplement the theoretical framework with numerical results on strong-field ionization of arbitrarily oriented H2+ molecules.Comment: 5 pages, 4 figure

    Orientation-dependent ionization yields from strong-field ionization of fixed-in-space linear and asymmetric top molecules

    Full text link
    The yield of strong-field ionization, by a linearly polarized probe pulse, is studied experimentally and theoretically, as a function of the relative orientation between the laser field and the molecule. Experimentally, carbonyl sulfide, benzonitrile and naphthalene molecules are aligned in one or three dimensions before being singly ionized by a 30 fs laser pulse centered at 800 nm. Theoretically, we address the behaviour of these three molecules. We consider the degree of alignment and orientation and model the angular dependence of the total ionization yield by molecular tunneling theory accounting for the Stark shift of the energy level of the ionizing orbital. For naphthalene and benzonitrile the orientational dependence of the ionization yield agrees well with the calculated results, in particular the observation that ionization is maximized when the probe laser is polarized along the most polarizable axis. For OCS the observation of maximum ionization yield when the probe is perpendicular to the internuclear axis contrasts the theoretical results.Comment: 14 pages, 4 figure

    Spectroscopy of the roAp star Alpha-Cir -- II. The bisector and equivalent-width of the H-alpha line

    Full text link
    We present bisector measurements of the H-alpha line of the rapidly oscillating Ap (roAp) star, Alpha-Cir, obtained from dual-site observations with medium-dispersion spectrographs. The velocity amplitude and phase of the principal pulsation mode vary significantly, depending on the height in the H-alpha line, including a phase reversal between the core and the wings of the line. This supports the theory, suggested in Paper I, of a radial pulsational node in the atmosphere of the star. Blending with metal lines partially affects the H-alpha bisector results but probably not enough to explain the phase reversal. We have also detected changes in the equivalent-width of the line during the pulsation, and measured the oscillatory signal as a function of wavelength across the H-alpha region.Comment: 13 pages, 14 figures, accepted by MNRA

    Solar-like oscillations and magnetic activity of the slow rotator EK Eri

    Full text link
    We aim to understand the interplay between non-radial oscillations and stellar magnetic activity and test the feasibility of doing asteroseismology of magnetically active stars. We analyze 30 years of photometric time-series data, 3 years of HARPS radial velocity monitoring, and 3 nights of high-cadence HARPS asteroseismic data. We construct a high-S/N HARPS spectrum that we use to determine atmospheric parameters and chemical composition. Spectra observed at different rotation phases are analyzed to search for signs of temperature or abundance variations. An upper limit on the projected rotational velocity is derived from very high-resolution CES spectra. We detect oscillations in EK Eri with a frequency of the maximum power of nu_max = 320+/-32 muHz, and we derive a peak amplitude per radial mode of ~0.15 m/s, which is a factor of ~3 lower than expected. We suggest that the magnetic field may act to suppress low-degree modes. Individual frequencies can not be extracted from the available data. We derive accurate atmospheric parameters, refining our previous analysis. We confirm that the main light variation is due to cool spots, but that other contributions may need to be taken into account. We suggest that the rotation period is twice the photometric period, i.e., P_rot = 2 P_phot = 617.6 d. We conclude from our derived parameters that v sin i < 0.40 km/s. We also link the time series of direct magnetic field measurements available in the literature to our newly derived photometric ephemeris.Comment: 11 pages, 10 figures. Accepted by A&

    Oscillations in the Sun with SONG: Setting the scale for asteroseismic investigations

    Full text link
    Context. We present the first high-cadence multi-wavelength radial-velocity observations of the Sun-as-a-star, carried out during 57 consecutive days using the stellar \'echelle spectrograph at the Hertzsprung SONG Telescope operating at the Teide Observatory. Aims. The aim was to produce a high-quality data set and reference values for the global helioseismic parameters {\nu_{max}}, and {\Delta \nu} of the solar p-modes using the SONG instrument. The obtained data set or the inferred values should then be used when the scaling relations are applied to other stars showing solar-like oscillations which are observed with SONG or similar instruments. Methods. We used different approaches to analyse the power spectrum of the time series to determine {\nu_{max}}; simple Gaussian fitting and heavy smoothing of the power spectrum. {\Delta\nu} was determined using the method of autocorrelation of the power spectrum. The amplitude per radial mode was determined using the method described in Kjeldsen et al. (2008). Results. We found the following values for the solar oscillations using the SONG spectrograph: {\nu_{max}} = 3141 {\pm} 12 {\mu}Hz, {\Delta\nu} = 134.98 {\pm} 0.04 {\mu}Hz and an average amplitude of the strongest radial modes of 16.6 {\pm} 0.4 cm/s. These values are consistent with previous measurements with other techniques.Comment: 5 pages, 5 figures, letter accepted for A&

    Modeling Kepler Observations of Solar-like Oscillations in the Red-giant Star HD 186355

    Full text link
    We have analysed oscillations of the red giant star HD 186355 observed by the NASA Kepler satellite. The data consist of the first five quarters of science operations of Kepler, which cover about 13 months. The high-precision time-series data allow us to accurately extract the oscillation frequencies from the power spectrum. We find the frequency of the maximum oscillation power, {\nu}_max, and the mean large frequency separation, {\Delta}{\nu}, are around 106 and 9.4 {\mu}Hz respectively. A regular pattern of radial and non-radial oscillation modes is identified by stacking the power spectra in an echelle diagram. We use the scaling relations of {\Delta}{\nu} and {\nu}_max to estimate the preliminary asteroseismic mass, which is confirmed with the modelling result (M = 1.45 \pm 0.05 M_sun) using the Yale Rotating stellar Evolution Code (YREC7). In addition, we constrain the effective temperature, luminosity and radius from comparisons between observational constraints and models. A number of mixed l = 1 modes are also detected and taken into account in our model comparisons. We find a mean observational period spacing for these mixed modes of about 58 s, suggesting that this red giant branch star is in the shell hydrogen-burning phase.Comment: 26 pages, 5 figures and 2 table

    Stellar Oscillations Network Group

    Full text link
    Stellar Oscillations Network Group (SONG) is an initiative aimed at designing and building a network of 1m-class telescopes dedicated to asteroseismology and planet hunting. SONG will have 8 identical telescope nodes each equipped with a high-resolution spectrograph and an iodine cell for obtaining precision radial velocities and a CCD camera for guiding and imaging purposes. The main asteroseismology targets for the network are the brightest (V<6) stars. In order to improve performance and reduce maintenance costs the instrumentation will only have very few modes of operation. In this contribution we describe the motivations for establishing a network, the basic outline of SONG and the expected performance.Comment: Proc. Vienna Workshop on the Future of Asteroseismology, 20 - 22 September 2006. Comm. in Asteroseismology, Vol. 150, in the pres
    corecore