3,915 research outputs found

    Inverse Compton X-rays from Giant Radio Galaxies at z~1

    Full text link
    We report XMM-Newton observations of three FR II radio galaxies at redshifts between 0.85 and 1.34, which show extended diffuse X-ray emission within the radio lobes, likely due to inverse-Compton up-scattering of the cosmic microwave background. Under this assumption, through spectrum-fitting together with archival VLA radio observations, we derive an independent estimate of the magnetic field in the radio lobes of 3C 469.1 and compare it with the equipartition value. We find concordance between these two estimates as long as the turnover in the energy distribution of the particles occurs at a Lorentz factor in excess of ~ 250. We determine the total energy in relativistic particles in the radio emitting lobes of all three sources to range between 3e59 and 8e59 erg. The nuclei of these X-ray sources are heavily-absorbed powerful AGN.Comment: 5 pages, 7 figures, 2 tables. Accepted for publication in MNRA

    Rapidly variable Fe Kα\alpha line in NGC 4051

    Full text link
    We present a detailed analysis on the variability of the Fe K emission line in NGC 4051 using ASCA data. Through simple Gaussian line fits, we find not only obvious Fe K line variability with no significant difference in the X-ray continuum flux between two ASCA observations which were separated by ∌\sim 440 days, but also rapid variability of Fe K line on time scales ∌104\sim 10^4 s within the second observation. During the second observation, the line is strong (EW = 733−219+206^{+206}_{-219} eV) and broad (σ=0.96−0.35+0.49\sigma = 0.96^{+0.49}_{-0.35} keV) when the source is brightest, and become weaker (EW = 165−86+87^{+87}_{-86} eV) and narrower (σ<0.09\sigma<0.09 keV) whilst the source is weakest. The equivalent width of Fe K line correlates positively with the continuum flux, which shows an opposite trend with another Seyfert 1 galaxy MCG --6-30-15.Comment: 12 pages with 5 figures, to appear in ApJ Vol. 516, L6

    ASCA observations of the nearby galaxies Dwingeloo 1 and Maffei 1

    Get PDF
    We present ASCA observations of the nearby galaxies Dwingeloo 1 (Dw1) and Maffei 1 (Mf1). X-ray sources are clearly detected within 3 arcminutes of the optical nuclei of both galaxies. Despite the low Galactic latitude of these fields (|b|<1\degmark) we conclude, on probability and spectral grounds, that the detected sources are intrinsic to these galaxies rather than foreground or background interlopers. The Dw1 source, designated Dw1-X1, is interpreted as being either a hyper-luminous X-ray binary (with a 0.5--10\,keV luminosity of more than 10^{39}\ergps) or an X-ray bright supernova. The Mf1 emission is hard and extended, suggesting that it originates from a population of X-ray binaries. Prompted by the Dw1-X1 results, we discuss the nature of hyper-luminous X-ray binary systems. Such sources are commonly seen in nearby galaxies with a frequency of approximately one per galaxy. We present a possible connection between these luminous systems and Galactic superluminal sources.Comment: 9 pages (4 ps figures included). Accepted for publication in MNRAS. Higher quality reproductions of Figure 1 available upon reques

    Iron K-alpha Fluorescent Line Profiles from Spiral Accretion Flows in AGNs

    Full text link
    We present 6.4 keV iron K-alpha fluorescent line profiles predicted for a relativistic black hole accretion disk in the presence of a spiral motion in Kerr geometry, the work extended from an earlier literature motivated by recent magnetohydrodynamic (MHD) simulations. The velocity field of the spiral motion, superposed on the background Keplerian flow, results in a complicated redshift distribution in the accretion disk. An X-ray source attributed to a localized flaring region on the black hole symmetry axis illuminates the iron in the disk. The emissivity form becomes very steep because of the light bending effect from the primary X-ray source to the disk. The predicted line profile is calculated for various spiral waves, and we found, regardless of the source height, that: (i) a multiple-peak along with a classical double-peak structure generally appears, (ii) such a multiple-peak can be categorized into two types, sharp sub-peaks and periodic spiky peaks, (iii) a tightly-packed spiral wave tends to produce more spiky multiple peaks, whereas (iv) a spiral wave with a larger amplitude seems to generate more sharp sub-peaks, (v) the effect seems to be less significant when the spiral wave is centrally concentrated, (vi) the line shape may show a drastic change (forming a double-peak, triple-peak or multiple-peak feature) as the spiral wave rotates with the disk. Our results emphasize that around a rapidly-rotating black hole an extremely redshifted iron line profile with a noticeable spike-like feature can be realized in the presence of the spiral wave. Future X-ray observations, from {\it Astro-E2} for example, will have sufficient spectral resolution for testing our spiral wave model which exhibits unique spike-like features.Comment: 30 pages, 10 figures, submitted to ApJ, will be presented at 204th Meeting of AAS in Denve

    The variable OVIII Warm Absorber in MCG-6-30-15

    Get PDF
    We present the results of a 4 day ASCA observation of the Seyfert galaxy MCG-6-30-15, focussing on the nature of the X-ray absorption by the warm absorber, characterizd by the K-edges of the intermediately ionized oxygen, OVII and OVIII. We confirm that the column density of OVIII changes on a timescale of ∌104\sim 10^4~s when the X-ray continuum flux decreases. The significant anti-correlation of column density with continuum flux gives direct evidence that the warm absorber is photoionized by the X-ray continuum. From the timescale of the variation of the OVIII column density, we estimate that it originates from gas within a radius of about 10^{17}\cm of the central engine. In contrast, the depth of the OVII edge shows no response to the continuum flux, which indicates that it originates in gas at larger radii. Our results strongly suggest that there are two warm absorbing regions; one located near or within the Broad Line Region, the other associated with the outer molecular torus, scattering medium or Narrow Line Region.Comment: 8 pages (including figures) uuencoded gziped PS file. Submitted to Publications of the Astronomical Society of Japa

    A Cloudy/Xspec Interface

    Get PDF
    We discuss new functionality of the spectral simulation code CLOUDY which allows the user to calculate grids with one or more initial parameters varied and formats the predicted spectra in the standard FITS format. These files can then be imported into the x-ray spectral analysis software XSPEC and used as theoretical models for observations. We present and verify a test case. Finally, we consider a few observations and discuss our results.Comment: 13 pages, 1 table, 4 figures, accepted for publication in PAS
    • 

    corecore