59 research outputs found

    Passive immunoprophylaxis and therapy with humanized monoclonal antibody specific for influenza A H5 hemagglutinin in mice

    Get PDF
    BACKGROUND: Highly pathogenic avian H5N1 influenza virus is a major public health concern. Given the lack of effective vaccine and recent evidence of antiviral drug resistance in some isolates, alternative strategies for containment of a possible future pandemic are needed. Humanized monoclonal antibodies (mAbs) that neutralize H5N1 virus could be used as prophylaxis and treatment to aid in the containment of such a pandemic. METHODS: Neutralizing mAbs against H5 hemagglutinin were humanized and introduced into C57BL/6 mice (1, 5, or 10 mg/kg bodyweight) one day prior to-, one day post- and three days post-lethal challenge with H5N1 A/Vietnam/1203/04 virus. Efficacy was determined by observation of weight loss as well as survival. RESULTS: Two mAbs neutralizing for antigenically variant H5N1 viruses, A/Vietnam/1203/04 and A/Hong Kong/213/03 were identified and humanized without loss of specificity. Both antibodies exhibited prophylactic efficacy in mice, however, VN04-2-huG1 performed better requiring only 1 mg/kg bodyweight for complete protection. When used to treat infection VN04-2-huG1 was also completely protective, even when introduced three days post infection, although higher dose of antibody was required. CONCLUSION: Prophylaxis and treatment using neutralizing humanized mAbs is efficacious against lethal challenge with A/Vietnam/1203/04, providing proof of principle for the use of passive antibody therapy as a containment option in the event of pandemic influenza

    Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency

    Get PDF
    Although thousands of breast cancer cells disseminate and home to bone marrow until primary surgery, usually less than a handful will succeed in establishing manifest metastases months to years later. To identify signals that support survival or outgrowth in patients, we profile rare bone marrow-derived disseminated cancer cells (DCCs) long before manifestation of metastasis and identify IL6/PI3K-signaling as candidate pathway for DCC activation. Surprisingly, and similar to mammary epithelial cells, DCCs lack membranous IL6 receptor expression and mechanistic dissection reveals IL6 trans-signaling to regulate a stem-like state of mammary epithelial cells via gp130. Responsiveness to IL6 trans-signals is found to be niche-dependent as bone marrow stromal and endosteal cells down-regulate gp130 in premalignant mammary epithelial cells as opposed to vascular niche cells. PIK3CA activation renders cells independent from IL6 trans-signaling. Consistent with a bottleneck function of microenvironmental DCC control, we find PIK3CA mutations highly associated with late-stage metastatic cells while being extremely rare in early DCCs. Our data suggest that the initial steps of metastasis formation are often not cancer cell-autonomous, but also depend on microenvironmental signals. Metastatic dissemination in breast cancer patients occurs early in malignant transformation, raising questions about how disseminated cancer cells (DCC) progress at distant sites. Here, the authors show that DCCs in bone marrow are activated via IL6-trans-signaling and thereby acquire stemness traits relevant for metastasis formation

    Human antibody RNase fusion protein targeting CD30+ lymphomas

    No full text
    Targeted RNases (TRs) are immunoenzymes with ribonucleases as cytotoxic effector domains, which are less immunogenic as plant or bacterial toxin components of classical immunotoxins. In this study, we show the generation and production of the first entirely human TR (huTR) directed against CD30+ lymphomas. The scFv-Fc-RNase construct was produced in human embryonic kidney (HEK) 293T cells, yielding up to 4 mg/L soluble protein after purification by protein A affinity chromatography. Size exclusion chromatography revealed a homodimer of the predicted molecular mass. Surface plasmon resonance analysis revealed an affinity to CD30 of KD of less than 1 nM for both the scFv-Fc and the scFv-Fc-RNase proteins. Internalization of the scFv-Fc-RNase protein by CD30+ Karpas-299 cells was demonstrated by confocal microscopy. Proliferation of the CD30+ lymphoma cell line Karpas-299 was strongly inhibited by CD30-specific huTR protein (IC50 = 3.3 nM). The huTR is a promising candidate for the immunotherapy of CD30+ lymphomas because of its expected low immunogenicity, good production yields, and potent effector function upon target cell binding and internalization. Its modular design is set to target other internalizing tumor antigens using different antibody domains
    corecore