1,395 research outputs found
Coupling of shells in a carbon nanotube quantum dot
We systematically study the coupling of longitudinal modes (shells) in a
carbon nanotube quantum dot. Inelastic cotunneling spectroscopy is used to
probe the excitation spectrum in parallel, perpendicular and rotating magnetic
fields. The data is compared to a theoretical model including coupling between
shells, induced by atomically sharp disorder in the nanotube. The calculated
excitation spectra show good correspondence with experimental data.Comment: 8 pages, 4 figure
Tunneling Spectroscopy of Quasiparticle Bound States in a Spinful Josephson Junction
The spectrum of a segment of InAs nanowire, confined between two
superconducting leads, was measured as function of gate voltage and
superconducting phase difference using a third normal-metal tunnel probe.
Sub-gap resonances for odd electron occupancy---interpreted as bound states
involving a confined electron and a quasiparticle from the superconducting
leads, reminiscent of Yu-Shiba-Rusinov states---evolve into Kondo-related
resonances at higher magnetic fields. An additional zero bias peak of unknown
origin is observed to coexist with the quasiparticle bound states.Comment: Supplementary information available here:
https://dl.dropbox.com/u/1742676/Chang_Sup.pd
A Semiconductor Nanowire-Based Superconducting Qubit
We introduce a hybrid qubit based on a semiconductor nanowire with an
epitaxially grown superconductor layer. Josephson energy of the transmon-like
device ("gatemon") is controlled by an electrostatic gate that depletes
carriers in a semiconducting weak link region. Strong coupling to an on-chip
microwave cavity and coherent qubit control via gate voltage pulses is
demonstrated, yielding reasonably long relaxation times (0.8 {\mu}s) and
dephasing times (1 {\mu}s), exceeding gate operation times by two orders of
magnitude, in these first-generation devices. Because qubit control relies on
voltages rather than fluxes, dissipation in resistive control lines is reduced,
screening reduces crosstalk, and the absence of flux control allows operation
in a magnetic field, relevant for topological quantum information
CO2-Fixation Strategies in Energy Extremophiles: What Can We Learn From Acetogens?
Domestication of CO2-fixation became a worldwide priority enhanced by the will to convert this greenhouse gas into fuels and valuable chemicals. Because of its high stability, CO2-activation/fixation represents a true challenge for chemists. Autotrophic microbial communities, however, perform these reactions under standard temperature and pressure. Recent discoveries shine light on autotrophic acetogenic bacteria and hydrogenotrophic methanogens, as these anaerobes use a particularly efficient CO2-capture system to fulfill their carbon and energy needs. While other autotrophs assimilate CO2 via carboxylation followed by a reduction, acetogens and methanogens do the opposite. They first generate formate and CO by CO2-reduction, which are subsequently fixed to funnel the carbon toward their central metabolism. Yet their CO2-reduction pathways, with acetate or methane as end-products, constrain them to thrive at the "thermodynamic limits of Life". Despite this energy restriction acetogens and methanogens are growing at unexpected fast rates. To overcome the thermodynamic barrier of CO2-reduction they apply different ingenious chemical tricks such as the use of flavin-based electron-bifurcation or coupled reactions. This mini-review summarizes the current knowledge gathered on the CO2-fixation strategies among acetogens. While extensive biochemical characterization of the acetogenic formate-generating machineries has been done, there is no structural data available. Based on their shared mechanistic similarities, we apply the structural information obtained from hydrogenotrophic methanogens to highlight common features, as well as the specific differences of their CO2-fixation systems. We discuss the consequences of their CO2-reduction strategies on the evolution of Life, their wide distribution and their impact in biotechnological applications
Accuracy, Scalability, and Efficiency of Mixed-Element USM3D for Benchmark Three-Dimensional Flows
The unstructured, mixed-element, cell-centered, finite-volume flow solver USM3D is enhanced with new capabilities including parallelization, line generation for general unstructured grids, improved discretization scheme, and optimized iterative solver. The paper reports on the new developments to the flow solver and assesses the accuracy, scalability, and efficiency. The USM3D assessments are conducted using a baseline method and the recent hierarchical adaptive nonlinear iteration method framework. Two benchmark turbulent flows, namely, a subsonic separated flow around a three-dimensional hemisphere-cylinder configuration and a transonic flow around the ONERA M6 wing are considered
Nonequilibrium Cotunneling through a Three-Level Quantum Dot
We calculate the nonlinear cotunneling conductance through a quantum dot with
3 electrons occupying the three highest lying energy levels. Starting from a
3-orbital Anderson model, we apply a generalized Schrieffer-Wolff
transformation to derive an effective Kondo model for the system. Within this
model we calculate the nonequilibrium occupation numbers and the corresponding
cotunneling current to leading order in the exchange couplings. We identify the
inelastic cotunneling thresholds and their splittings with applied magnetic
field, and make a qualitative comparison to recent experimental data on carbon
nanotube and InAs quantum-wire quantum dots. Further predictions of the model
like cascade resonances and a magnetic-field dependence of the orbital level
splitting are not yet observed but within reach of recent experimental work on
carbon nanotube and InAs nanowire quantum dots.Comment: 12 pages, 13 figure
Superconductivity-enhanced bias spectroscopy in carbon nanotube quantum dots
We study low-temperature transport through carbon nanotube quantum dots in
the Coulomb blockade regime coupled to niobium-based superconducting leads. We
observe pronounced conductance peaks at finite source-drain bias, which we
ascribe to elastic and inelastic cotunneling processes enhanced by the
coherence peaks in the density of states of the superconducting leads. The
inelastic cotunneling lines display a marked dependence on the applied gate
voltage which we relate to different tunneling-renormalizations of the two
subbands in the nanotube. Finally, we discuss the origin of an especially
pronounced sub-gap structure observed in every fourth Coulomb diamond
Seasonal variation in musculoskeletal extremity injuries in school children aged 6-12 followed prospectively over 2.5 years:a cohort study
OBJECTIVES: The type and level of physical activity in children vary over seasons and might thus influence the injury patterns. However, very little information is available on the distribution of injuries over the calendar year. This study aims to describe and analyse the seasonal variation in extremity injuries in children. DESIGN: Prospective cohort study. SETTING: 10 public schools in the municipality of Svendborg, Denmark. PARTICIPANTS: A total of 1259 school children aged 6–12 years participating in the Childhood Health, Activity, and Motor Performance School Study Denmark. METHODS: School children were surveyed each week during 2.5 school-years. Musculoskeletal injuries were reported by parents answering automated mobile phone text questions (SMS-Track) on a weekly basis and diagnosed by clinicians. Data were analysed for prevalence and incidence rates over time with adjustments for gender and age. RESULTS: Injuries in the lower extremities were reported most frequently (n=1049). There was a significant seasonal variation in incidence and prevalence for lower extremity injuries and for lower and upper extremity injuries combined (n=1229). For the upper extremities (n=180), seasonal variation had a significant effect on the risk of prevalence. Analysis showed a 46% increase in injury incidence and a 32% increase in injury prevalence during summer relative to winter for lower and upper extremity injuries combined. CONCLUSIONS: There are clear seasonal differences in the occurrence of musculoskeletal extremity injuries among children with almost twice as high injury incidence and prevalence estimates during autumn, summer and spring compared with winter. This suggests further research into the underlying causes for seasonal variation and calls for preventive strategies to be implemented in order to actively prepare and supervise children before and during high-risk periods
Parity lifetime of bound states in a proximitized semiconductor nanowire
Quasiparticle excitations can compromise the performance of superconducting
devices, causing high frequency dissipation, decoherence in Josephson qubits,
and braiding errors in proposed Majorana-based topological quantum computers.
Quasiparticle dynamics have been studied in detail in metallic superconductors
but remain relatively unexplored in semiconductor-superconductor structures,
which are now being intensely pursued in the context of topological
superconductivity. To this end, we introduce a new physical system comprised of
a gate-confined semiconductor nanowire with an epitaxially grown superconductor
layer, yielding an isolated, proximitized nanowire segment. We identify
Andreev-like bound states in the semiconductor via bias spectroscopy, determine
the characteristic temperatures and magnetic fields for quasiparticle
excitations, and extract a parity lifetime (poisoning time) of the bound state
in the semiconductor exceeding 10 ms.Comment: text and supplementary information combine
Expresión incompleta de incompatibilidad trimórfica en Oxalis compacta Gill. ex Hook. et Arn. subsp. compacta en los Andes de Chile central
The expression of trimorphic incompatibility was investigated in a high altitude population of Oxalis compacta subsp.compacta distributed in the upper alpine belt (3100-3470 m) of the central Chile Andes. Stigma-anther reciprocity (2populations), morph representation (7 populations), unassisted selfing capacity and open-pollination fruit set (6 populations)were determined. O. compacta ssp. compacta es highly dependent on external pollinators. Although it has typical tristylousflowers, considerable seed set is possible following illegitimate intermorph and intramorph cross pollination. Openpollination fruit set varied from 9-83% and on average was lower in the higher-elevation populations. The possibilityof seed set following two kinds of illegitimate cross pollination is seen as a means of enhancing reproductive output byenabling more effective use of the limited pollinator resource in the high alpine environment, where fruit set shows highinter-annual variability and there is some evidence for pollination limitation in Oxalis compacta subsp. compacta.Se investigó la expresión de incompatibilidad trimórfica en una población de Oxalis compacta subsp. compacta distribuidaen la zona alpina superior de los Andes de Chile central. Se determinó la reciprocidad de los estigmas y anteras (dospoblaciones), representación de morfos florales (7 poblaciones), capacidad para autofecundación no asistida y polinizaciónabierta (6 poblaciones). O. compacta subsp. compacta es altamente dependiente de polinizadores externos. No obstantela presencia de flores tristilicas, las dos categorías ilegítimas de polinización dieron semillas. La producción de frutosmediante polinización abierta fluctuó entre 9-83% y en promedio fue menor en las poblaciones de mayor elevación. Seplantea que la capacidad de formar semillas mediante polinización ilegítima permitirá el uso más eficaz del recurso limitadode polinización en la zona andina superior, donde los niveles de fructificación varían entre años y existe evidencia preliminarde limitación de polen en Oxalis compacta subsp. compacta
- …