68 research outputs found
Spinons and helimagnons in the frustrated Heisenberg chain
We investigate the dynamical spin structure factor S(q,w) for the Heisenberg
chain with ferromagnetic nearest (J1<0) and antiferromagnetic next-nearest
(J2>0) neighbor exchange using bosonization and a time-dependent density-matrix
renormalization group algorithm. For |J1|<< J2 and low energies we analytically
find and numerically confirm two spinon branches with different velocities and
different spectral weights. Following the evolution of S(q,w) with decreasing
J1/J2 we find that helimagnons develop at high energies just before entering
the ferromagnetic phase. Furthermore, we show that a recent interpretation of
neutron scattering data for LiCuVO4 in terms of two weakly coupled
antiferromagnetic chains (|J_1|<< J2) is not viable. We demonstrate that the
data are instead fully consistent with a dominant ferromagnetic coupling, J1/J2
~ -2.Comment: 5 pages, 3 figure
Lightcone renormalization and quantum quenches in one-dimensional Hubbard models
The Lieb-Robinson bound implies that the unitary time evolution of an
operator can be restricted to an effective light cone for any Hamiltonian with
short-range interactions. Here we present a very efficient renormalization
group algorithm based on this light cone structure to study the time evolution
of prepared initial states in the thermodynamic limit in one-dimensional
quantum systems. The algorithm does not require translational invariance and
allows for an easy implementation of local conservation laws. We use the
algorithm to investigate the relaxation dynamics of double occupancies in
fermionic Hubbard models as well as a possible thermalization. For the
integrable Hubbard model we find a pure power-law decay of the number of doubly
occupied sites towards the value in the long-time limit while the decay becomes
exponential when adding a nearest neighbor interaction. In accordance with the
eigenstate thermalization hypothesis, the long-time limit is reasonably well
described by a thermal average. We point out though that such a description
naturally requires the use of negative temperatures. Finally, we study a
doublon impurity in a N\'eel background and find that the excess charge and
spin spread at different velocities, providing an example of spin-charge
separation in a highly excited state.Comment: published versio
The one-dimensional Hubbard model with open ends: Universal divergent contributions to the magnetic susceptibility
The magnetic susceptibility of the one-dimensional Hubbard model with open
boundary conditions at arbitrary filling is obtained from field theory at low
temperatures and small magnetic fields, including leading and next-leading
orders. Logarithmic contributions to the bulk part are identified as well as
algebraic-logarithmic divergences in the boundary contribution. As a
manifestation of spin-charge separation, the result for the boundary part at
low energies turns out to be independent of filling and interaction strength
and identical to the result for the Heisenberg model. For the bulk part at zero
temperature, the scale in the logarithms is determined exactly from the Bethe
ansatz. At finite temperature, the susceptibility profile as well as the
Friedel oscillations in the magnetisation are obtained numerically from the
density-matrix renormalisation group applied to transfer matrices. Agreement is
found with an exact asymptotic expansion of the relevant correlation function.Comment: 30 pages, 8 figures, reference adde
Plasma detachment study of high density helium plasmas in the Pilot-PSI device
We have investigated plasma detachment phenomena of high-density helium plasmas in the linear plasma device Pilot-PSI, which can realize a relevant ITER SOL/Divertor plasma condition. The experiment clearly indicated plasma detachment features such as drops in the plasma pressure and particle flux along the magnetic field lines that were observed under the condition of high neutral pressure; a feature of flux drop was parameterized using the degree of detachment (DOD) index. Fundamental plasma parameters such as electron temperature (T e) and electron density in the detached recombining plasmas were measured by different methods: reciprocating electrostatic probes, Thomson scattering (TS), and optical emission spectroscopy (OES). The T e measured using single and double probes corresponded to the TS measurement. No anomalies in the single probe I – V characteristics, observed in other linear plasma devices [16, 17, 36], appeared under the present condition in the Pilot-PSI device. A possible reason for this difference is discussed by comparing the different linear devices. The OES results are also compared with the simulation results of a collisional radiative (CR) model. Further, we demonstrated more than 90% of parallel particle and heat fluxes were dissipated in a short length of 0.5 m under the high neutral pressure condition in Pilot-PSI.</p
Synthesis and biological evaluation of novel MB327 analogs as resensitizers for desensitized nicotinic acetylcholine receptors after intoxication with nerve agents
Poisoning with organophosphorus compounds, which can lead to a cholinergic crisis due to the inhibition of acetylcholinesterase and the subsequent accumulation of acetylcholine (ACh) in the synaptic cleft, is a serious problem for which treatment options are currently insufficient. Our approach to broadening the therapeutic spectrum is to use agents that interact directly with desensitized nicotinic acetylcholine receptors (nAChRs) in order to induce functional recovery after ACh overstimulation. Although MB327, one of the most prominent compounds investigated in this context, has already shown positive properties in terms of muscle force recovery, this compound is not suitable for use as a therapeutic agent due to its insufficient potency. By means of in silico studies based on our recently presented allosteric binding pocket at the nAChR, i.e. the MB327-PAM-1 binding site, three promising MB327 analogs with a 4-aminopyridinium ion partial structure (PTM0056, PTM0062, and PTM0063) were identified. In this study, we present the synthesis and biological evaluation of a series of new analogs of the aforementioned compounds with a 4-aminopyridinium ion partial structure (PTM0064-PTM0072), as well as hydroxy-substituted analogs of MB327 (PTMD90–0012 and PTMD90–0015) designed to substitute entropically unfavorable water clusters identified during molecular dynamics simulations. The compounds were characterized in terms of their binding affinity towards the aforementioned binding site by applying the UNC0642 MS Binding Assays and in terms of their muscle force reactivation in rat diaphragm myography. More potent compounds were identified compared to MB327, as some of them showed a higher affinity towards MB327-PAM-1 and also a higher recovery of neuromuscular transmission at lower compound concentrations. To improve the treatment of organophosphate poisoning, direct targeting of nAChRs with appropriate compounds is a key step, and this study is an important contribution to this research
Long-term effects of chronic light pollution on seasonal functions of European blackbirds (turdus merula)
Light pollution is known to affect important biological functions of wild animals, including daily and annual cycles. However, knowledge about long-term effects of chronic exposure to artificial light at night is still very limited. Here we present data on reproductive physiology, molt and locomotor activity during two-year cycles of European blackbirds (Turdus merula) exposed to either dark nights or 0.3 lux at night. As expected, control birds kept under dark nights exhibited two regular testicular and testosterone cycles during the two-year experiment. Control urban birds developed testes faster than their control rural conspecifics. Conversely, while in the first year blackbirds exposed to light at night showed a normal but earlier gonadal cycle compared to control birds, during the second year the reproductive system did not develop at all: both testicular size and testosterone concentration were at baseline levels in all birds. In addition, molt sequence in light-treated birds was more irregular than in control birds in both years. Analysis of locomotor activity showed that birds were still synchronized to the underlying light-dark cycle. We suggest that the lack of reproductive activity and irregular molt progression were possibly the results of i) birds being stuck in a photorefractory state and/or ii) chronic stress. Our data show that chronic low intensities of light at night can dramatically affect the reproductive system. Future studies are needed in order to investigate if and how urban animals avoid such negative impact and to elucidate the physiological mechanisms behind these profound long-term effects of artificial light at night. Finally we call for collaboration between scientists and policy makers to limit the impact of light pollution on animals and ecosystems
Collective Thomson scattering system for determination of ion properties in a high flux plasma beam
A collective Thomson scattering system has been developed for measuring ion temperature, plasma velocity and impurity concentration in the high density magnetized Magnum-PSI plasma beam, allowing for measurements at low temperature (4 x 10 20m3,while avoiding laser plasma heating caused by inverse Bremsstrahlung. The collective Thomson scattering system is based on the fundamental mode of a seeded Nd:YAG laser and equipped with an LIVAR M506 camera (EBABS technology). The first collective Thomson scattering measurements are taken at the linear plasma generator Pilot-PSI, 40 mm downstream of the cascaded arc source. At this location, the ion temperature is about equal to the electron temperature in the bulk of the plasma beam
Radiocesium concentrations in wild mushrooms after the accident at the Fukushima Daiichi Nuclear Power Station: Follow-up study in Kawauchi village
Since the accident at the Chernobyl Nuclear Power Plant, it has become well known that radiocesium tends to concentrate in wild mushrooms. During the recovery process after the accident at the Fukushima Daiichi Nuclear Power Station (FDNPS), it is important to perform follow-up measurements of the activity concentrations of radiocesium in mushrooms. We evaluated the activity concentrations of the detected artificial radionuclides (radiocesium) in wild mushrooms collected from Kawauchi village, which is within 30?km of the FDNPS, in 2015, four years after the accident. We found that the radiocesium was determined in 147 of 159 mushroom samples (92.4%). Based on the average mushroom consumption of Japanese citizens (6.28?kg per year), we calculated committed effective doses ranging from <0.001 to 0.6?mSv. Although committed effective doses are relatively limited, even if residents have consumed mushrooms several times, continuous monitoring of the radiocesium in mushrooms in Fukushima is needed for sustained recovery from the nuclear disaster
Nos2 Inactivation Promotes the Development of Medulloblastoma in Ptch1+/− Mice by Deregulation of Gap43–Dependent Granule Cell Precursor Migration
Medulloblastoma is the most common malignant brain tumor in children. A subset of medulloblastoma originates from granule cell precursors (GCPs) of the developing cerebellum and demonstrates aberrant hedgehog signaling, typically due to inactivating mutations in the receptor PTCH1, a pathomechanism recapitulated in Ptch1+/− mice. As nitric oxide may regulate GCP proliferation and differentiation, we crossed Ptch1+/− mice with mice lacking inducible nitric oxide synthase (Nos2) to investigate a possible influence on tumorigenesis. We observed a two-fold higher medulloblastoma rate in Ptch1+/− Nos2−/− mice compared to Ptch1+/− Nos2+/+ mice. To identify the molecular mechanisms underlying this finding, we performed gene expression profiling of medulloblastomas from both genotypes, as well as normal cerebellar tissue samples of different developmental stages and genotypes. Downregulation of hedgehog target genes was observed in postnatal cerebellum from Ptch1+/+ Nos2−/− mice but not from Ptch1+/− Nos2−/− mice. The most consistent effect of Nos2 deficiency was downregulation of growth-associated protein 43 (Gap43). Functional studies in neuronal progenitor cells demonstrated nitric oxide dependence of Gap43 expression and impaired migration upon Gap43 knock-down. Both effects were confirmed in situ by immunofluorescence analyses on tissue sections of the developing cerebellum. Finally, the number of proliferating GCPs at the cerebellar periphery was decreased in Ptch1+/+ Nos2−/− mice but increased in Ptch1+/− Nos2−/− mice relative to Ptch1+/− Nos2+/+ mice. Taken together, these results indicate that Nos2 deficiency promotes medulloblastoma development in Ptch1+/− mice through retention of proliferating GCPs in the external granular layer due to reduced Gap43 expression. This study illustrates a new role of nitric oxide signaling in cerebellar development and demonstrates that the localization of pre-neoplastic cells during morphogenesis is crucial for their malignant progression
- …