4,698 research outputs found

    Note on Triangle Anomalies and Assignment of Singlet in 331-like Model

    Full text link
    It is pointed out that in the 331−331-like model which uses both fundamental and complex conjugate representations for an assignment of the representations to the left-handed quarks and the scalar representation to their corresponding right-handed counterparts, the nature of the scalar should be taken into account in order to make the fermion triangle anomalies in the theory anomaly-free, i.e. renormalizable in a sense with no anomalies, even after the spontaneous symmetry breaking.Comment: 8 page no figures, acknowledgments adde

    Electromagnetic Hadron Form Factors and Higher Fock Components

    Get PDF
    Investigation of the spacelike and timelike electromagnetic form factors of hadrons, within a relativistic microscopical model characterized by a small set of hypothesis, could shed light on the components of hadron states beyond the valence one. Our relativistic approach has been successfully applied first to the pion and then the extension to the nucleon has been undertaken. The pion case is shortly reviewed as an illustrative example for introducing the main ingredients of our approach, and preliminary results for the nucleon in the spacelike range −10(GeV/c)2≀q2≀0-10 (GeV/c)^2\le q^2 \le 0 are evaluated.Comment: 8 pages, 6 figs, espcrc1.sty included. Proceedings of Fifth International Conference on Perspectives In Hadronic Physics, ICTP, May 22-26, 200

    Timelike and spacelike hadron form factors, Fock state components and light-front dynamics

    Get PDF
    A unified description of spacelike and timelike hadron form factors within a light-front model was successfully applied to the pion. The model is extended to the nucleon to study the role of qqˉq \bar q pair production and of nonvalence components in the nucleon form factors. Preliminary results in the spacelike range 0≀Q2≀10 (GeV/c)20 \le Q^2 \le 10 ~ (GeV/c)^2 are presented.Comment: 4 pages, espcrc1.sty. proceedings of FB XVIII (August 2006, Brazil), to be published in Nucl. Phys.

    Comment on ``Majoron emitting neutrinoless double beta decay in the electroweak chiral gauge extensions''

    Get PDF
    We point out that if the majoron-like scheme is implemented within a 331 model, there must exist at least three different mass scales for the scalar vacuum expectation values in the model.Comment: 4 pages, no figures, Revtex. To be published in Physical Review

    Electromagnetic form factors of the nucleon in spacelike and timelike regions

    Get PDF
    An approach for a unified description of the nucleon electromagnetic form factors in spacelike and timelike regions is presented. The main ingredients of our model are: i)i) a Mandelstam formula for the matrix elements of the nucleon electromagnetic current; ii)ii) a 3-dimensional reduction of the problem on the Light-Front performed within the so-called {\tt Propagator Pole Approximation} ({\bf PPA}), which consists in disregarding the analytical structure of the Bethe-Salpeter amplitudes and of the quark-photon vertex function in the integration over the minus components of the quark momenta; iii)iii) a dressed photon vertex in the qqˉq\bar{q} channel, where the photon is described by its spin-1, hadronic component.Comment: 8 pages, 9 figs., macro added. Proceedings of the XI Conf. on Problems in Theoretical Nuclear Physics, Cortona, Oct. 11-14, 200

    PredictChain: Empowering Collaboration and Data Accessibility for AI in a Decentralized Blockchain-based Marketplace

    Full text link
    Limited access to computing resources and training data poses significant challenges for individuals and groups aiming to train and utilize predictive machine learning models. Although numerous publicly available machine learning models exist, they are often unhosted, necessitating end-users to establish their computational infrastructure. Alternatively, these models may only be accessible through paid cloud-based mechanisms, which can prove costly for general public utilization. Moreover, model and data providers require a more streamlined approach to track resource usage and capitalize on subsequent usage by others, both financially and otherwise. An effective mechanism is also lacking to contribute high-quality data for improving model performance. We propose a blockchain-based marketplace called "PredictChain" for predictive machine-learning models to address these issues. This marketplace enables users to upload datasets for training predictive machine learning models, request model training on previously uploaded datasets, or submit queries to trained models. Nodes within the blockchain network, equipped with available computing resources, will operate these models, offering a range of archetype machine learning models with varying characteristics, such as cost, speed, simplicity, power, and cost-effectiveness. This decentralized approach empowers users to develop improved models accessible to the public, promotes data sharing, and reduces reliance on centralized cloud providers

    A GBT Survey of the HALOGAS Galaxies and Their Environments I: Revealing the full extent of HI around NGC891, NGC925, NGC4414 & NGC4565

    Get PDF
    We present initial results from a deep neutral hydrogen (HI) survey of the HALOGAS galaxy sample, which includes the spiral galaxies NGC891, NGC925, NGC4414, and NGC4565, performed with the Robert C. Byrd Green Bank Telescope (GBT). The resulting observations cover at least four deg2^2 around these galaxies with an average 5σ\sigma detection limit of 1.2×\times1018^{18} cm−2^{-2} over a velocity range of 20 km s−1^{-1} and angular scale of 9.1â€Č'. In addition to detecting the same total flux as the GBT data, the spatial distribution of the GBT and original Westerbork Synthesis Radio Telescope (WSRT) data match well at equal spatial resolutions. The HI mass fraction below HI column densities of 1019^{19} cm−2^{-2} is, on average, 2\%. We discuss the possible origins of low column density HI of nearby spiral galaxies. The absence of a considerable amount of newly detected HI by the GBT indicates these galaxies do not have significant extended diffuse HI structures, and suggests future surveys planned with the SKA and its precursors must go \textit{at least} as deep as 1017^{17} cm−2^{-2} in column density to significantly increase the probability of detecting HI associated with the cosmic web and/or cold mode accretion.Comment: Accepted for publication in The Astrophysical Journal; 28 pages, 15 figure

    Control and ultrasonic actuation of a gas-liquid interface in a microfluidic chip

    Full text link
    This article describes the design and manufacturing of a microfluidic chip, allowing for the actuation of a gas-liquid interface and of the neighboring fluid. A first way to control the interface motion is to apply a pressure difference across it. In this case, the efficiency of three different micro-geometries at anchoring the interface is compared. Also, the critical pressures needed to move the interface are measured and compared to theoretical result. A second way to control the interface motion is by ultrasonic excitation. When the excitation is weak, the interface exhibits traveling waves, which follow a dispersion equation. At stronger ultrasonic levels, standing waves appear on the interface, with frequencies that are half integer multiple of the excitation frequency. An associated microstreaming flow field observed in the vicinity of the interface is characterized. The meniscus and associated streaming flow have the potential to transport particles and mix reagents

    Remark on the vectorlike nature of the electromagnetism and the electric charge quantization

    Full text link
    In this work we study the structure of the electromagnetic interactions and the electric charge quantization in gauge theories of electroweak interactions based on semi-simple groups. We show that in the standard model of the electroweak interactions the structure of the electromagnetic interactions is strongly correlated to the quantization pattern of the electric charges. We examine these two questions also in all possible chiral bilepton gauge models of the electroweak interactions. In all they we can explain the vectorlike nature of the electromagnetic interactions and the electric charge quantization together demanding nonvanishing fermion masses and the anomaly cancellations.Comment: 17 pages, latex, no figure

    Matching factorization theorems with an inverse-error weighting

    Get PDF
    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections to the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H0 boson and Drell–Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–Sterman subtraction scheme. It is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements
    • 

    corecore