8,812 research outputs found

    Renormalization and blow up for charge one equivariant critical wave maps

    Full text link
    We prove the existence of equivariant finite time blow up solutions for the wave map problem from 2+1 dimensions into the 2-sphere. These solutions are the sum of a dynamically rescaled ground-state harmonic map plus a radiation term. The local energy of the latter tends to zero as time approaches blow up time. This is accomplished by first "renormalizing" the rescaled ground state harmonic map profile by solving an elliptic equation, followed by a perturbative analysis

    Nondispersive solutions to the L2-critical half-wave equation

    Get PDF
    We consider the focusing L2L^2-critical half-wave equation in one space dimension itu=Duu2u, i \partial_t u = D u - |u|^2 u, where DD denotes the first-order fractional derivative. Standard arguments show that there is a critical threshold M>0M_* > 0 such that all H1/2H^{1/2} solutions with uL2<M\| u \|_{L^2} < M_* extend globally in time, while solutions with uL2M\| u \|_{L^2} \geq M_* may develop singularities in finite time. In this paper, we first prove the existence of a family of traveling waves with subcritical arbitrarily small mass. We then give a second example of nondispersive dynamics and show the existence of finite-time blowup solutions with minimal mass u0L2=M\| u_0 \|_{L^2} = M_*. More precisely, we construct a family of minimal mass blowup solutions that are parametrized by the energy E0>0E_0 >0 and the linear momentum P0RP_0 \in \R. In particular, our main result (and its proof) can be seen as a model scenario of minimal mass blowup for L2L^2-critical nonlinear PDE with nonlocal dispersion.Comment: 51 page

    Energy dispersed large data wave maps in 2+1 dimensions

    Get PDF
    In this article we consider large data Wave-Maps from R2+1\mathbb{R}^{2+1} into a compact Riemannian manifold (M,g)(\mathcal{M},g), and we prove that regularity and dispersive bounds persist as long as a certain type of bulk (non-dispersive) concentration is absent. In a companion article we use these results in order to establish a full regularity theory for large data Wave-Maps.Comment: 89 page

    Theory of Coherent Time-dependent Transport in One-dimensional Multiband Semiconductor Superlattices

    Full text link
    We present an analytical study of one-dimensional semiconductor superlattices in external electric fields, which may be time-dependent. A number of general results for the (quasi)energies and eigenstates are derived. An equation of motion for the density matrix is obtained for a two-band model, and the properties of the solutions are analyzed. An expression for the current is obtained. Finally, Zener-tunneling in a two-band tight-binding model is considered. The present work gives the background and an extension of the theoretical framework underlying our recent Letter [J. Rotvig {\it et al.}, Phys. Rev. Lett. {\bf 74}, 1831 (1995)], where a set of numerical simulations were presented.Comment: 15 pages, Revtex 3.0, uses epsf, 2 ps figures attache

    Vapor pressures of substituted polycarboxylic acids are much lower than previously reported

    Get PDF
    The partitioning of compounds between the aerosol and gas phase is a primary focus in the study of the formation and fate of secondary organic aerosol. We present measurements of the vapor pressure of 2-methylmalonic (isosuccinic) acid, 2-hydroxymalonic (tartronic) acid, 2-methylglutaric acid, 3-hydroxy-3-carboxy-glutaric (citric) acid and DL-2,3-dihydroxysuccinic (DL-tartaric) acid, which were obtained from the evaporation rate of supersaturated liquid particles levitated in an electrodynamic balance. Our measurements indicate that the pure component liquid vapor pressures at 298.15 K for tartronic, citric and tartaric acids are much lower than the same quantity that was derived from solid state measurements in the only other room temperature measurement of these materials (made by Booth et al., 2010). This strongly suggests that empirical correction terms in a recent vapor pressure estimation model to account for the inexplicably high vapor pressures of these and similar compounds should be revisited, and that due caution should be used when the estimated vapor pressures of these and similar compounds are used as inputs for other studies

    New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups

    Get PDF
    We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H^+, Li^+, Na^+, K^+, NH_(4)^+, Mg^(2+), Ca^(2+), Cl^−, Br^−, NO_(3)^−, HSO_(4)^−, and SO_(4)^(2−). Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization algorithms. A number of exemplary calculations for systems containing atmospherically relevant aerosol components are shown. Amongst others, we discuss aqueous mixtures of ammonium sulfate with dicarboxylic acids and with levoglucosan. Overall, the new parameterization of AIOMFAC agrees well with a large number of experimental datasets. However, due to various reasons, for certain mixtures important deviations can occur. The new parameterization makes AIOMFAC a versatile thermodynamic tool. It enables the calculation of activity coefficients of thousands of different organic compounds in organic-inorganic mixtures of numerous components. Models based on AIOMFAC can be used to compute deliquescence relative humidities, liquid-liquid phase separations, and gas-particle partitioning of multicomponent mixtures of relevance for atmospheric chemistry or in other scientific fields

    Do topology and ferromagnetism cooperate at the EuS/Bi2_2Se3_3 interface?

    Full text link
    We probe the local magnetic properties of interfaces between the insulating ferromagnet EuS and the topological insulator Bi2_2Se3_3 using low energy muon spin rotation (LE-μ\muSR). We compare these to the interface between EuS and the topologically trivial metal, titanium. Below the magnetic transition of EuS, we detect strong local magnetic fields which extend several nm into the adjacent layer and cause a complete depolarization of the muons. However, in both Bi2_2Se3_3 and titanium we measure similar local magnetic fields, implying that their origin is mostly independent of the topological properties of the interface electronic states. In addition, we use resonant soft X-ray angle resolved photoemission spectroscopy (SX-ARPES) to probe the electronic band structure at the interface between EuS and Bi2_2Se3_3. By tuning the photon energy to the Eu anti-resonance at the Eu M5M_5 pre-edge we are able to detect the Bi2_2Se3_3 conduction band, through a protective Al2_2O3_3 capping layer and the EuS layer. Moreover, we observe a signature of an interface-induced modification of the buried Bi2_2Se3_3 wave functions and/or the presence of interface states

    Matrix-free calcium in isolated chromaffin vesicles

    Get PDF
    Isolated secretory vesicles from bovine adrenal medulla contain 80 nmol of Ca2+ and 25 nmol of Mg2+ per milligram of protein. As determined with a Ca2+-selective electrode, a further accumulation of about 160 nmol of Ca2+/mg of protein can be attained upon addition of the Ca2+ ionophore A23187. During this process protons are released from the vesicles, in exchange for Ca2+ ions, as indicated by the decrease of the pH in the incubation medium or the release of 9-aminoacridine previously taken up by the vesicles. Intravesicular Mg2+ is not released from the vesicles by A23 187, as determined by atomic emission spectroscopy. In the presence of N H Q , which causes the collapse of the secretory vesicle transmembrane proton gradient (ApH), Ca2+ uptake decreases. Under these conditions A23 187-mediated influx of Ca2+ and efflux of H+ cease at Ca2+ concentrations of about 4 pM. Below this concentration Ca2+ is even released from the vesicles. At the Ca2+ concentration at which no net flux of ions occurs the intravesicular matrix free Ca2+ equals the extravesicular free Ca2+. In the absence of NH4C1 we determined an intravesicular pH of 6.2. Under these conditions the Ca2+ influx ceases around 0.15 pM. From this value and the known pH across the vesicular membrane an intravesicular matrix free Ca2+ concentration of about 24 pM was calculated. This is within the same order of magnitude as the concentration of free Ca2+ in the vesicles determined in the presence of NH4C1. Calculation of the total Ca2+ present in the secretory vesicles gives an apparent intravesicular Ca2+ concentration of 40 mM, which is a factor of lo4 higher than the free intravesicular concentration of Ca2+. It can be concluded, therefore, that the concentration gradient of free Ca2+ across the secretory vesicle membrane in the intact chromaffin cells is probably small, which implies that less energy is required to accumulate and maintain Ca2+ within the vesicles than was previously anticipated

    Parameterized optimized effective potential for atoms

    Full text link
    The optimized effective potential equations for atoms have been solved by parameterizing the potential. The expansion is tailored to fulfill the known asymptotic behavior of the effective potential at both short and long distances. Both single configuration and multi configuration trial wave functions are implemented. Applications to several atomic systems are presented improving previous works. The results here obtained are very close to those calculated in either the Hartree-Fock and the multi configurational Hartree-Fock framework.Comment: 8 pages, 3 figure

    Effects of Chronic Morphine Treatment on Β-Endorphin-Related Peptides in the Caudal Medulla and Spinal Cord

    Full text link
    The effects of chronic morphine treatment on Β-endorphin (ΒE)-immunoreactive (ΒE-ir) peptide levels were determined in the rat caudal medulla and different areas of the spinal cord. Seven days of morphine pelleting had no effect on total ΒE-ir peptides in the caudal medulla. In contrast, it significantly increased ΒE-ir peptide concentrations in the cervical and thoracic regions of the spinal cord compared with placebo-pelleted controls, whereas in the lumbosacral region this trend did not reach statistical significance. Injections of the opiate receptor antagonist naloxone 1 h before the rats were killed had no effect on the morphine-induced increases in the cord. Chromatographic analyses revealed that enzymatic processing of ΒE-related peptides in the spinal cord seemed unaffected by the morphine and/or naloxone treatments. In light of previous data showing that morphine down-regulates ΒE biosynthesis in the hypothalamus, the present results suggest that the regulation of ΒE-ir peptides in the spinal cord is distinct from that found in other CNS areas. These data provide support for previous results suggesting that ΒE-expressing neurons may be intrinsic to the spinal cord.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65660/1/j.1471-4159.1993.tb03518.x.pd
    corecore