35,360 research outputs found

    Helical tape forming device

    Get PDF
    Using a device that is not limited to a minimum thickness or width-to-thickness ratio, a very thin metal tape or ribbon is formed into a continuous flat wound helical coil. The device imparts the desired circular shape by squeeze rolling it with an unequal force across its width

    Low friction magnetic recording tape Patent

    Get PDF
    Development of low friction magnetic recording tap

    Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies

    Get PDF
    Experimental techniques are developed to determine the applicability of a particular luminescing center for use in a luminescent solar concentrator (LSC). The relevant steady-state characteristics of eighteen common organic laser dyes are given. The relative spectral homogeneity of such dyes are shown to depend upon the surrounding material using narrowband laser excitation. We developed three independent techniques for measuring self-absorption rates; these are time-resolved emission, steady-state polarization anisotropy, and spectral convolution. Preliminary dye degradation and prototype efficiency measurements are included. Finally, we give simple relationships relating the efficiency and gain of an LSC to key spectroscopic parameters of its constituents

    Parity effect and single-electron injection for Josephson-junction chains deep in the insulating state

    Full text link
    We have made a systematic investigation of charge transport in 1D chains of Josephson junctions where the characteristic Josephson energy is much less than the single-island Cooper-pair charging energy, EJ≪ECPE_\mathrm{J}\ll E_{CP}. Such chains are deep in the insulating state, where superconducting phase coherence across the chain is absent, and a voltage threshold for conduction is observed at the lowest temperatures. We find that Cooper-pair tunneling in such chains is completely suppressed. Instead, charge transport is dominated by tunneling of single electrons, which is very sensitive to the presence of BCS quasiparticles on the superconducting islands of the chain. Consequently we observe a strong parity effect, where the threshold voltage vanishes sharply at a characteristic parity temperature T∗T^*, which is significantly lower than the the critical temperature, TcT_c. A measurable and thermally-activated zero-bias conductance appears above T∗T^*, with an activation energy equal to the superconducting gap, confirming the role of thermally-excited quasiparticles. Conduction below T∗T^* and above the voltage threshold occurs via injection of single electrons/holes into the Cooper-pair insulator, forming a non-equilibrium steady state with a significantly enhanced effective temperature. Our results explicitly show that single-electron transport dominates deep in the insulating state of Josephson-junction arrays. This conduction process has mostly been ignored in previous studies of both superconducting junction arrays and granular superconducting films below the superconductor-insulator quantum phase transition.Comment: 8 pages, 6 figure
    • …
    corecore