12 research outputs found

    Cosmic ray sputtering yield of interstellar ice mantles: CO and CO2 ice thickness dependence

    No full text
    International audienceAims. Cosmic-ray-induced sputtering is one of the important desorption mechanisms at work in astrophysical environments. The chemical evolution observed in high-density regions, from dense clouds to protoplanetary disks, and the release of species condensed on dust grains, is one key parameter to be taken into account in interpretations of both observations and models.Methods. This study is part of an ongoing systematic experimental determination of the parameters to consider in astrophysical cosmic ray sputtering. As was already done for water ice, we investigated the sputtering yield as a function of ice mantle thickness for the two next most abundant species of ice mantles, carbon monoxide and carbon dioxide, which were exposed to several ion beams to explore the dependence with deposited energy.Results. These ice sputtering yields are constant for thick films. It decreases rapidly for thin ice films when reaching the impinging ion sputtering desorption depth. An ice mantle thickness dependence constraint can be implemented in the astrophysical modelling of the sputtering process, in particular close to the onset of ice mantle formation at low visual extinctions

    Electronic sputtering of solid N2_2 by swift ions

    No full text
    International audienceMost sputtering yield measurements for solid N 2 are reported for stopping powers lower than 10 −13eV cm 2 /molecule. We measured the sputtering yield for solid N 2 at stopping powers, in the electronic regime, above 10 −12eV cm 2 /molecule, extending the range of such measurements by more than an order of magnitude, using a 33 MeV 58 Ni 9+ swift heavy ions beam. The evolution of the thin N 2 ice films was monitored in-situ by mid-infrared spectroscopy (FTIR) during irradiation. As N 2 is only weakly infrared active, and can be hardly monitored directly via an infrared absorption mode in such experiments, we use the Fabry–Perot interference fringes of the ice film to evaluate, via an optical model, the erosion of the N 2 film as a function of ion fluence. A sputtering model including several sputtering crater shapes is developed and tested against experimental data. We derive the sputtering yield for a semi-infinite N 2 ice film and its dependence with the ice thickness for thin film conditions, monitoring the N 2 ice sputtering depth. We combine the results with previous measurements at lower stopping powers to derive the electronic sputtering of solid N 2 over a large stopping power range

    Cosmic ray sputtering yield of interstellar H

    No full text
    Aims. Interstellar grain mantles present in dense interstellar clouds are in constant exchange with the gas phase via accretion and desorption mechanisms such as UV, X-ray photodesorption, cosmic ray induced sputtering, grain thermal fluctuations, and chemical reaction energy release. The relative importance of the various desorption mechanisms is of uttermost importance for astrophysical models to constrain the chemical evolution in such high density dense cloud regions. Methods. The sputtering yields for swift ions simulating the effects of cosmic rays are most often measured in the semi-infinite limit using thick ice targets with the determination of the effective yield per incident ion. In this experimental work we investigated the sputtering yield as a function of ice mantle thickness, exposed to Xe ions at 95 MeV. The ion induced ice phase transformation and the sputtering yield were simultaneously monitored by infrared spectroscopy and mass spectrometry. Results. The sputtering yield is constant above a characteristic ice layer thickness and then starts to decrease below this thickness. An estimate of the typical sputtering depth corresponding to this length can be evaluated by comparing the infinite thickness yield to the column density where the onset of the sputtering yield decrease occurs. In these experiments the measured characteristic desorption depth corresponds to ≈30 ice layers. Assuming an effective cylindrical shape for the volume of sputtered molecules, the aspect ratio is close to unity; in the semi-infinite ice film case this ratio is the diameter to height of the cylinder. This result shows that most ejected molecules arise from a rather compact volume. The measured infinite thickness sputtering yield for water ice mantles scales as the square of the ion electronic stopping power (Se, deposited energy per unit path length). Considering the experiments on insulators, we expect that the desorption depth dependence varies with Seα \textstyle S_\mathrm e^\alpha , where α ~ 1. Astrophysical models should take into account the thickness dependence constraints of these ice mantles in the interface regions when ices are close to their extinction threshold. In the very dense cloud regions, most of the water ice mantles are above this limit for the bulk of the cosmic rays

    Non-thermal desorption of complex organic molecules: Efficient CH3_3OH and CH3_3COOCH3_3 sputtering by cosmic rays

    Get PDF
    International audienceContextContext. The occurrence of complex organic molecules (COMs) in the gas phase at low temperature in the dense phases of the interstellar medium suggests that a non-thermal desorption mechanism is at work because otherwise, COMs should condense within a short timescale onto dust grains. Vacuum ultraviolet (VUV) photodesorption has been shown to be much less efficient for complex organic molecules, such as methanol, because mostly photoproducts are ejected. The induced photolysis competes with photodesorption for large COMs, which considerably lowers the efficiency to desorb intact molecules.AimsAims. We pursue an experimental work that has already shown that water molecules, the dominant ice mantle species, can be efficiently sputtered by cosmic rays. We investigate the sputtering efficiency of complex organic molecules that are observed either in the ice mantles of interstellar dense clouds directly by infrared spectroscopy (CH3_3OH), or that are observed in the gas phase by millimeter telescopes ((CH3_3COOCH3_3) and that could be released from interstellar grain surfaces.MethodsMethods. We irradiated ice films containing complex organic molecules (methanol and methyl acetate) and water with swift heavy ions in the electronic sputtering regime. We monitored the infrared spectra of the film as well as the species released to the gas phase with a mass spectrometer.ResultsResults. We demonstrate that when methanol or methyl acetate is embedded in a water-ice mantle exposed to cosmic rays, a large portion is sputtered as an intact molecule, with a sputtering yield close to that of the main water-ice matrix. This must be even more true for the case of more volatile ice matrices, such as those that are embedded in carbon monoxide.ConclusionsConclusions. Cosmic rays penetrating deep into dense clouds provide an efficient mechanism to desorb complex organic molecules. Compared to the VUV photons, which are induced by the interaction of cosmic rays, a large portion desorb as intact molecules with a proportion corresponding to the time-dependent bulk composition of the ice mantle, the latter evolving with time as a function of fluence due to the radiolysis of the bulk

    Pulse shape discrimination for GRIT: Beam test of a new integrated charge and current preamplifier coupled with high granularity Silicon detectors

    No full text
    International audienceThe GRIT (Granularity, Resolution, Identification, Transparency) Silicon array is intended to measure direct reactions. Its design is based on several layers (three layers in the forward direction, two backward) of custom-made trapezoidal and square detectors. The first stage is 500 Όm thick and features 128 × 128 orthogonal strips. Pulse shape analysis for particle identification is implemented for this first layer. Given the compacity of this array and the large number of channels involved (>7500), an integrated preamplifier, iPACI, that gives charge and current information has been developed in the AMS 0.35 Όm BiCMOS technology. The design specifications and results of the test bench are presented. Considering an energy range of 50 MeV and an energy resolution (FWHM) of 12 keV (FWHM) for the preamplifier, the energy resolution for one strip obtained from alpha source measurement in real conditions is 35 keV. The current output bandwidth is measured at 130 MHz for small signals and the power consumption reaches 40 mW per detector channel. A first beam test was performed coupling a nTD trapezoidal double-sided stripped Silicon detector of GRIT with the iPACI preamplifier and a 64-channel digitizer. Z = 1 particles are discriminated with pulse shape analysis technique down to 2 MeV for protons, 2.5 MeV for deuterons and 3 MeV for tritons. The effect of the strip length due to the trapezoidal shape of the detector is investigated on both the N- and the P-side, showing no significant impact

    Excitation and fragmentation in high velocity CnN+ - He collisions

    No full text
    We will present measurements and modeling for two aspects of the CnN+ - He collisions (n=1-3, v=2.25 a.u) :cross sections for electronic excitation processes and fragmentation branching ratios for the excited and ionized CnNq+ molecules produced in the collision (q=-1,0,1,2-5).SCOPUS: cp.jinfo:eu-repo/semantics/publishe

    Study of key resonances in the 30P(p,Îł)31S reaction in classical novae

    No full text
    Among reactions with strong impact on classical novae model predictions, 30P(p,γ)31S is one of the few remained that are worthy to be measured accurately, because of their rate uncertainty, as like as 18F(p,α)15O and 25Al(pγ)26Si. To reduce the nuclear uncertainties associated to this reaction, we performed an experiment at ALTO facility of Orsay using the 31P(3He,t)31S reaction to populate 31S excited states of astrophysical interest and detect in coincidence the protons coming from the decay of the populated states in order to extract the proton branching ratios. After a presentation of the astrophysical context of this work, the current situation of the 30P(p,γ)31S reaction rate will be discussed. Then the experiment set-up of this work and the analysis of the single events will be presented

    Study of key resonances in the

    No full text
    Among reactions with strong impact on classical novae model predictions, 30P(p,γ)31S is one of the few remained that are worthy to be measured accurately, because of their rate uncertainty, as like as 18F(p,α)15O and 25Al(pγ)26Si. To reduce the nuclear uncertainties associated to this reaction, we performed an experiment at ALTO facility of Orsay using the 31P(3He,t)31S reaction to populate 31S excited states of astrophysical interest and detect in coincidence the protons coming from the decay of the populated states in order to extract the proton branching ratios. After a presentation of the astrophysical context of this work, the current situation of the 30P(p,γ)31S reaction rate will be discussed. Then the experiment set-up of this work and the analysis of the single events will be presented
    corecore