1,943 research outputs found

    Attenuated total reflection enhanced photoejection from cathodes Final report

    Get PDF
    Optical equations governing interaction between radiation and interface of two media using metallic cathode

    Disorder effect in low dimensional superconductors

    Full text link
    The quasiparticle density of states (DOS), the energy gap, the superfluid density ρs\rho_s, and the localization effect in the s- and d-wave superconductors with non-magnetic impurity in two dimensions (2D) are studied numerically. For strong (unitary) scatters, we find that it is the range of the scattering potential rather than the symmetry of the superconducting pairing which is more important in explaining the impurity dependences of the specific heat and the superconducting transition temperature in Zn doped YBCO. The localization length is longer in the d-wave superconducting state than in the normal state, even in the vicinity of the Fermi energy.Comment: 2 pages, uuencoded compressed postscript file, IRC-940610

    Raising the critical temperature by disorder in unconventional superconductors mediated by spin fluctuations

    Full text link
    We propose a mechanism whereby disorder can enhance the transition temperature Tc of an unconventional superconductor with pairing driven by exchange of spin fluctuations. The theory is based on a self-consistent real space treatment of pairing in the disordered one-band Hubbard model. It has been demonstrated before that impurities can enhance pairing by softening the spin fluctuations locally; here, we consider the competing effect of pair-breaking by the screened Coulomb potential also present. We show that, depending on the impurity potential strength and proximity to magnetic order, this mechanism results in a weakening of the disorder-dependent Tc-suppression rate expected from Abrikosov-Gor'kov theory, or even in disorder-generated Tc enhancements.Comment: 6 pages, 4 figures + Supplementary Materia

    Evolution of the neutron resonances in AFe2Se2

    Full text link
    Recent experiments on the alkali-intercalated iron selenides have raised questions about the symmetry of the superconducting phase. Random phase approximation calculations of the leading pairing eigenstate for a tight- binding 5-orbital Hubbard-Hund model of AFe2Se2 find that a d-wave (B1g) state evolves into an extended s{\pm} (A1g) state as the system is hole-doped. However, over a range of doping these two states are nearly degenerate. Here, we calculate the imaginary part of the magnetic spin susceptibility \chi"(q,{\omega}) for these gaps and discuss how the evolution of neutron scattering resonances can distinguish between them

    Universal zero-frequency Raman slope in a d-wave superconductor

    Full text link
    It is known that for an unconventional superconductor with nodes in the gap, the in-plane microwave or dc conductivity saturates at low temperatures to a universal value independent of the impurity concentration. We demonstrate that a similar feature can be accessed using channel-dependent Raman scattering. It is found that, for a dx2y2d_{x^2-y^2}-wave superconductor, the slope of low-temperature Raman intensity at zero frequency is universal in the A1gA_{1g} and B2gB_{2g} channels, but not in the B1gB_{1g} channel. Moreover, as opposed to the microwave conductivity, universal Raman slopes are sensitive not only to the existence of a node, but also to different pairing states and should allow one to distinguish between such pairing states.Comment: 5 page

    Origin of Gap Anisotropy in Spin Fluctuation Models of the Fe-pnictides

    Full text link
    We discuss the large gap anisotropy found for the A1g (s-wave) state in RPA spin-fluctuation and functional renormalization group calculations and show how the simple arguments leading to isotropic sign-switched s-wave states in these systems need to be supplemented by a consideration of pair scattering within Fermi surface sheets and between the individual electron sheets as well. In addition, accounting for the orbital makeup of the states on the Fermi surface is found to be crucial.Comment: 6 pages, 7 figure

    Local modulations of the spin-fluctuation mediated pairing interaction by impurities in d-wave superconductors

    Get PDF
    We present a self-consistent real space formulation of spin-fluctuation mediated d-wave pairing. By calculating all relevant inhomogeneous spin and charge susceptibilities in real space within the random phase approximation (RPA), we obtain the effective pairing interaction and study its spatial dependence near both local potential and hopping impurities. A remarkably large enhancement of the pairing interaction may be obtained near the impurity site. We discuss the relevance of our result to inhomogeneities observed by scanning tunneling spectroscopy on the surface of cuprate superconductors.Comment: 8 pages, 7 figure
    corecore